

DS1921H/DS1921Z

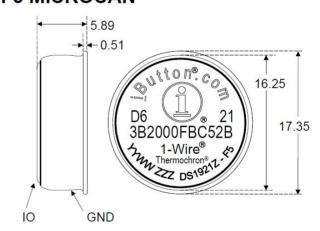
Устройства TEPMOXPOH iButton с Высоким Разрешением

☀ЭлИн Перевод выполнен НТЛ "ЭлИн" (<u>http://www.elin.ru</u>), февраль 2014 года

ИНДИВИДУАЛЬНЫЕ ОСОБЕННОСТИ

- · Цифровой термометр для регистрации температуры с разрешением 1/8°C и предельной погрешностью ± 1 °C;
- Встроенные часы/календарь реального времени с погрешностью хода ±2 минуты в месяц при эксплуатации в температурном диапазоне от 0°C до 45°C.
- Водонепроницаемость при условии размещения внутри приспособления iButton Capsule DS9107 (допустимое давление воды превышает 3 атм.)
- Автоматический запуск и измерение окружающей температуры с программируемым пользователем интервалом в диапазоне от 1 минуты • Приборы до 255 минут.
- · Сохраняет результаты последовательных измерений в памяти данных объёмом 2 Кбайта.
- Запись долговременной температурной гистограммы с разрешением 1/2°C.
- Программируемые верхний и нижний температурные пороги.
- Фиксирование 24 моментов начала И продолжительности временных интервалов. контролируемой нахождения температуры границами коридора, определяемого температурными порогами.
- Содержит 512 байт статического ОЗУ назначения, питающегося от встроенной батареи.
- Разделение памяти на 256 битные страницы для пакетирования данных.
- Для связи с внешними средствами поддержки имеет встроенный узел 1-Wire-интерфейса, реализующий сетевой протокол передачи данных, поддерживающий скорость обмена до 15,4 Кбит/с в стандартном режиме и до 125 Кбит/с в ускоренном режиме.
- температурный Фиксируемый диапазон: для модификации H : от +15°C до +46°C. для модификации Z: от -5°C до +26°C

ОБШИЕ ОСОБЕННОСТИ ПРИБОРОВ **CEMENCTBA** iButton


- Обеспечивает моментальную идентификацию передачу информации при прикосновении к корпусу прибора.
- Уникальный, фабрично подготовленный лазером Примеры аксессуаров 64-разрядный регистрационный идентификационный номер (8 разрядов кода семейства + 48 разрядов серийного номера + 8 разрядов контрольной суммы), позволяющий безошибочно идентифицировать прибор.
- Встроенный сетевой контроллер 1-Wire-магистрали обеспечивает совместимость с другими продуктами, 1-Wire-интерфейсом, поэтому оснащенными множество подобных приборов могут работать на

одной 1-Wire-магистрали.

- Встроенная базовая полупроводниковая схема хранит получаемую от встроенного термометра устройства информацию в сжатом виде
- Данные с прибора могут быть получены (считаны) кратковременному благодаря прикосновению внешнего зонда к обеим плоскостям его корпуса.
- Монетообразный корпус прибора самоцентрируется в специализированных приемных зондах.
- Долговечный корпус прибора выдерживает воздействие большинства агрессивных сред и имеет своей поверхности выгравированный индивидуальный регистрационный номер прибора.
- легко закрепляются посредством самоклеющихся площадок, защелкивания за фланец корпуса или кольцевого зажима.
- Встроенная схема детектора напряжения четко фиксирует прикосновения приёмного зонда устройства-считывателя.

Конструкция и габаритные размеры корпуса прибора (все размеры даны в миллиметрах).

F5 MICROCAN

Маркировка

Обозначение прибора	Температурный диапазон	Тип корпуса		
DS1921H -F5#	от +15°C до +46°C	F5 can		
DS1922Z -F5#	от —5°С до +26°С	F5 can		

Обозначает изготовленный соответствии в и директивой RoHS прибор, который может содержать кратковременном свинец, используемый по технологии, освобождённой от требований директивы.

	<u> </u>	3 •				
1	Обозначение	Аксессуар				
,	DS9096P	Самоклеющаяся площадка				
•	DS9101	Многоцелевой зажим				
	DS9093RA	Фиксирующее кольцо-держатель				
1	DS9093A	Защелкивающийся кольцевой замок				
, /	DS9092	Приёмный iButton-зонд				

Внимание! iButton и 1-Wire являются зарегистрированными марками изготовителя Maxim Integrated Products, Inc.

КРАТКОЕ ОПИСАНИЕ

DS1921H/Z Thermochron iButton – является самодостаточной системой. которая. после задания ей выбранных пользователем установочных значений измеряет температуру и записывает результаты в зашищенную секцию встроенной энергонезависимой памяти данных. Запись производится с определяемой пользователем скоростью. Данные сохраняются как в виде значений температуры (при этом два последовательных результата хранятся в соседних ячейках памяти данных буфера последовательных отсчетов), так и в форме гистограммы или длительности нахождения температуры за установленными пределами. Прибор может сохранять до 2048 значений температуры, измеренной через равные интервалы от 1 минуты до 255 минут. Гистограмма температур отображает 64 столбца данных с разрешением 0,5°C. Каждый столбец эквивалентен 16-разрядному двоичному счетчику, показания которого увеличиваются, если измеренное значение температуры попадает, в минидиапазон с которым связан столбец. Если температура выходит за пределы, задаваемые пользователем (верхний и нижний), DS1921H/Z регистрирует, момент, когда это случилось, и сколько именно времени температура оставалась вне допустимого коридора, а также была ли она при этом выше или ниже заданных границ. Прибор может записать 24 таких случая, по 12 для каждого из порогов (верхнего и нижнего). Для этого используется специальный сегмент энергонезависимой памяти прибора, доступный пользователю, как и другие сегменты хранения зарегистрированных данных, только для чтения. Все три сегмента независимы, и никак не связаны друг с другом, а потому являются простым, дополняющим друг друга решением для хранения и восстановления информации об температуре объекта, где установлен DS1921H/Z. Дополнительные 512 байт статического ОЗУ общего назначения, питающегося от встроенной батареи, позволяют сохранять информацию, относящуюся к объекту, с которым соотнесён данный конкретный прибор.

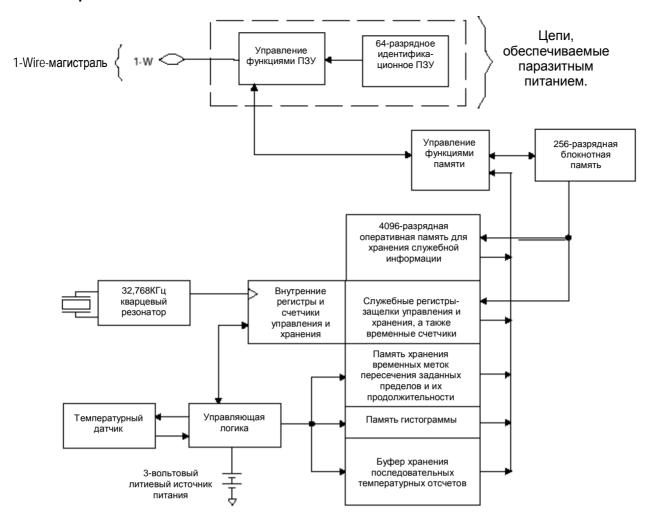
ПРИМЕНЕНИЕ

DS1921Z - идеальный прибор для мониторинга температуры любых объектов температурный диапазон хранения, которых располагается в районе 0°C. Такой TEPMOXPOH идеален для контроля хранения и транспортирования критичных к окружающей температуре жидкостей. DS1921H предназначен для мониторинга температуры тела человека и животных, а также различных технологических процессов, связанных с невысокими температурными диапазонами, таких как вулканизация, работа с порошковыми покрытиями, покраска и т.д.

DS1921H имеет фиксированный диапазон от +15°C до +46°C, а DS1921Z имеет фиксированный диапазон от -5°C до +26°C, а обеспечиваемое ими высокое разрешение дает возможность использовать приборы этого типа в научных исследованиях и инженерных применениях самого различного направления.

Заметим, что начальный уровень герметичности приборов эквивалентен степени IP56. С течением времени и изза условий применения герметичность может ухудшиться, поэтому для применений, связанных с длительными экспозициями регистратора в жидкостях, спреях и т. п., рекомендуется размещать TEPMOXPOH в специальной капсуле для приборов iButton – DS9107. Приспособление DS9107 представляет собой водонепроницаемый чехол, обеспечивающий степень защиты IP68 (см. Application Note 4126: *Understanding the IP (Ingress Protection) Ratings* of iButton Data Loggers and Capsules - Понимание значений степени защиты IP для iButton-даталогеров и iButton-капсулы).

АРХИТЕКТУРА


Функциональная схема на Рис.1 показывает связь между основными узлами управления и секциями памяти прибора DS1921H/Z. Прибор имеет семь главных областей данных:

- 1) 64-разрядное идентификационное ПЗУ, прошитое лазером,
- 2) 256-битную блокнотную память,
- 3) 4096-битное статическое служебное ОЗУ (дополнительная память),
- 4) 256-битное пространство регистров (управления, хранения времени и счетчиков),
- 5) 96 байт памяти для фиксации событий нарушения установленных пределов и продолжительности нахождения температуры вне этих пределов,
- 6) 126 байт данных для построения гистограммы,
- 7) 2048 байт для хранения результатов измерения в виде таблицы, или буфер последовательных температурных отсчетов,

За исключением идентификационного ПЗУ и блокнотной памяти все другие области расположены в едином линейном адресном пространстве. Вся память, служащая для хранения результатов, регистры счетчиков и некоторые другие регистры доступны только для чтения. Регистры управления и хранения времени защищены от записи, пока прибор программируется на следующий цикл измерений.

Иерархическая структура 1-Wire-протокола информационного обмена прибора показана на Рис. 2. Сначала ведущий 1-Wire-магистрали должен адресовать устройство, сгенерировав одну из семи команд, связанных с идентификационным ПЗУ устройства: 1) Чтение ПЗУ, 2) Совпадение ПЗУ, 3) Поиск ПЗУ, 4) Условный Поиск ПЗУ, 5) Пропуск ПЗУ, 6) Ускоренный Пропуск ПЗУ, 7) Ускоренное Совпадение ПЗУ. После выполнения команд Ускоренный Пропуск ПЗУ или Ускоренное совпадение ПЗУ при стандартной скорости обмена, прибор перейдет в ускоренный режим, где обмен происходит с более высокой скоростью. Протокол, требуемый для команд, связанных с функцией ПЗУ, изображен на Рис. 13. После успешного выполнения любой команды, связанной с функциями ПЗУ становятся доступными функции памяти, и ведущий 1-Wire-магистрали может выполнить любую из семи доступных команд функции памяти. Протокол для этих команд изображен на Рис. 10. **Чтение и запись всех данных производится, начиная с младшего значащего бита.**

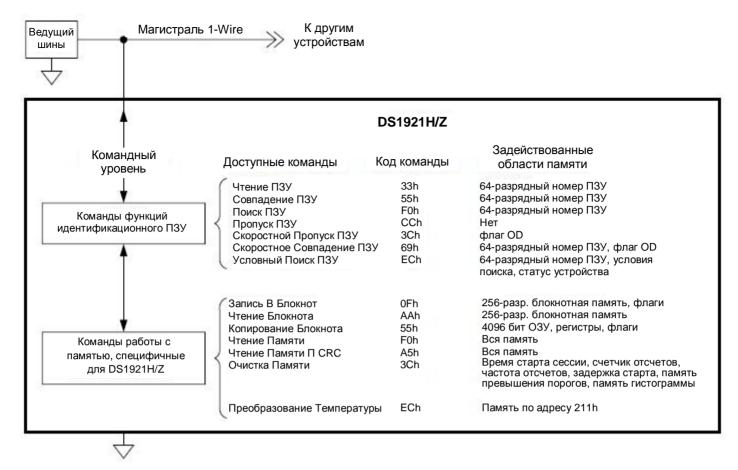
Рис.1 ФУНКЦИОНАЛЬНАЯ СХЕМА DS1921H/Z

ПАРАЗИТНОЕ ПИТАНИЕ

На Рис. 1 пунктиром выделены узлы в устройстве, питающиеся от паразитного питания. Эти узлы подпитываются от шины данных, когда она находится в высоком состоянии (логическая 1). Шина данных обеспечивает достаточное питание так долго, как этого требуют временные и энергетические параметры схемы.

Встроенная схема паразитного питания от шины DATA 1-Wire-магистрали обеспечивает два основных преимущества прибора:

- 1) благодаря этому уменьшается общий расход литиевой батареи,
- 2) если литиевая батарея по какой-либо причине не исправна, все еще можно прочитать ПЗУ идентификационного номера прибора.


Остальные узлы DS1921H/Z питаются исключительно от встроенной в прибор батареи. Как следствие, если энергия батареи израсходована, все данные в памяти теряются, включая данные последней сессии, и новую сессию запустить нельзя. О том, как проверить состояние батареи, объясняется в документе Application Note 5057: One Wire Viewer Tips and Tricks.

64-битное ПРОШИТОЕ ЛАЗЕРОМ ПЗУ ИДЕНТИФИКАЦИОННОГО НОМЕРА

Прибор имеет уникальный фабрично подготовленный лазером 64-разрядный регистрационный идентификационный номер. Первые 8 бит — это групповой кода семейства (21h), следующие 12-разрядов определяют код диапазона температур, регистрируемых конкретной модификацией DS1921H или DS1921Z, а идущие за тем 36 бит — уникальный серийный номер, и последние 8 бит - это код контрольной суммы CRC первых 56 бит (см.рис. 3). CRC-код вырабатывается с помощью полиномиального генератора, состоящего из сдвигового регистра и логических схем XOR (исключающее ИЛИ), как показано на Рис. 4. Полином имеет вид $X^8 + X^5 + X^4 + 1$. Дополнительная информация о CRC-коде содержится в документе «Application Note 27» и в книге «Book of DS19XX iButton Standards».

Разряды сдвигового регистра при инициализации устанавливаются в «0». Затем, начиная с младшего значащего бита, в регистр поразрядно вводится код семейства. После введения восьмого бита кода семейства, вводится серийный номер. Если введен серийный номер, сдвиговый регистр содержит значение CRC. После операции сдвига восьми бит CRC, все биты сдвигового регистра возвращаются в состояние «0».

Рис.2 СТРУКТУРА ПРОТОКОЛА 1-WIRE-ПРОТОКОЛА ДЛЯ УСТРОЙСТВ DS1921H/Z

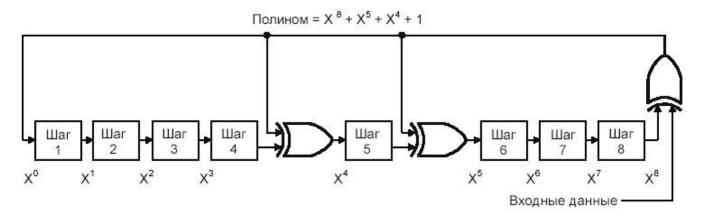


Рис. 3. СТРУКТУРА ИДЕНТИФИКАЦИОННОГО ПЗУ

Старший адрес номера	a			Младший адрес номера
Байт контро	льной суммы	12-разрядный код диапазона регистрируемых температур	48-разрядный серийный номер	8 разрядов группового кода 021Н
Старший разряд	Младший разряд	Старший раздяд		й Старший Младший разряд разряд

Маркировка прибора	Диапазон регистрируемых температур	Чувствительность	послед бит ко реги	Поразрядная последовательность бит кода диапазона регистрируемых температур		12-разрядный код диапазона регистрируемых температур.
DS1921H-F5	от +15°C до +46°C	0,125°C	0100	1111	0010	4F2H
DS1921Z-F5	от -5°C до +26°C	0,125°C	0000	0110	0100	3B2H

Рис. 4. АЛГОРИТМ РАБОТЫ CRC-ГЕНЕРАТОРА 1-WIRE

ПАМЯТЬ

Карта памяти прибора DS1921H/Z показана на Рис. 5. 4096-битное служебное ОЗУ (дополнительная пользовательская память) занимает страницы с 0-й по 15-ю. Регистры управления, хранения времени и счетчиков заполняют страницу 16 (структуру Страницы служебных регистров см. на Рис. 6). Страницы 17÷19 используются для хранения информации о нарушении контролируемой температурой заданных пользователем порогов. Данные гистограммы температур находятся на страницах 64÷67. Страницы 128÷191 представляют собой буфер последовательных отсчетов. Страницы памяти с 20 по 63, с 68 по 127, и с 192 по 255 зарезервированы для расширений приборов семейства ТЕРМОХРОН. Блокнотная память представляет собой дополнительную страницу, используемую как промежуточный буфер при записи данных в память ОЗУ или в страницу регистров. Страницы с номерами 17 и выше доступны только для чтения. Они записываются или стираются исключительно внутренней управляющей логикой устройства DS1921H/Z.

Рис. 5. КАРТА ПАМЯТИ DS1921H/Z

	Промежуточная блокнотная память (32 байта).	
Адреса		
0000h÷01FFh	Пользовательская память.	Страницы 0÷15
0200h÷021Fh	32-байтовая страница служебных регистров.	Страница 16
0220h÷027Fh	Память для хранения временных меток моментов выходов за пороги и продолжительности этих выходов	Страницы 17÷19
0280h÷07FFh	Зарезервировано для дальнейших расширений.	Страницы 20÷63
0800h÷087Fh	Память гистограммы.	Страница 64÷67
0880h÷0FFFh	Зарезервировано для дальнейших расширений.	Страницы 68÷127
1000h÷17FFh	Буфер последовательных температурных отсчетов (64 страницы).	Страница 128÷191
1800h÷1FFFh	Зарезервировано для дальнейших расширений.	Страницы 192÷255

Рис.6 КАРТА СТРАНИЦЫ СЛУЖЕБНЫХ РЕГИСТРОВ DS1921H/Z

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0	Функция	Тип доступа
0200h	0	Де	сятки секу	ид		Единиці	ы секунд			
0201h	0	Де	есятки мин	ут		Единиц	ы минут			
0202h	0	12/24- часовая система	Второй десяток часов АМ/РМ	Десяток часов		Единиц	ы часов		Регистры часов	
0203h	0	0	0	0	0	Į	lень недел	ІИ	реального времени	R/W; R/W**
0204h	0	0	Десятки ч	исла даты	E	Единицы д	аты (числа	a)	времени	
0205h	СЕПТ Признак века	0	0	Десяток месяца		Единиць	ы месяца			
0206h		Десят	ки лет			Едини	цы лет			
0207h	MS	Десятк	и секунд у	ставки	E,	диницы се	кунд устав	ки		
0208h	MM	Десят	ки минут у	ставки	Е	диницы мі	инут устав	ки	Регистры	
0209h	МН	12/24- часовая система	Второй десяток часов АМ/РМ	Первый десяток часов уставки	E	Единицы часов уставки			будильника часов реального времени	R/W; R/W**
020Ah	MD	0	0	0	0	День	недели ус	тавки		
020Bh	Нижний температурный порог							Температурные	R/W; R/W**	
020Ch			Верх	ний темпе	ратурный	порог			пороги	1000,1000
020Dh		Количеств	о минут ме	ежду темпе	ературным	и преобра	зованиями	1	Частота регистрации	R/W; R**
020Eh	EOSC	EMCLR	0	EM	RO	TLS	THS	TAS	Управления	R/W; R/W**
020Fh			Не име	ет функции	і, читается	как 00h			Не используется	R; R**
0210h			Не име	ет функции	и, читается	читается как 00h			Не используется	R; R**
0211h			3	начение т	емператур	Ы			Результат	R; R**
0212h				Младш	ий байт				Задержка начала	R/W; R/W**
0213h				Старші	ий байт				измерений.	
0214h	TCB	MEMCLR	MIP	SIP	0	TLF	THF	TAF	Статусный регистр	R/W; R/W
0215h				Мин	нуты					
0216h				Ча	СЫ				Время начала	
0217h				Да	та				отработки сессии	R; R
0218h				Me	сяц				CCCCVIVI	
0219h				Г	ОД					
021Ah				Младш	ий байт				Счетчик отсчетов	
021Bh				Средні	ий байт				текущей сессии	R; R
021Ch	Старший байт									
021Dh				Младш	ий байт				Спотиму общого	
021Eh				Средні	ий байт				Счетчик общего числа отсчетов	R; R
021Fh				Старші	ий байт					

^{*}Первый элемент в колонке «Тип доступа» действителен во время между отработками сессий, второй элемент действителен во время отработки текущей сессии.

ХРАНЕНИЕ ВРЕМЕНИ

Доступ к информации о состоянии регистров и счетчиков встроенного узла «часов/будильника» реального времени и календаря осуществляется посредством чтения/записи соответствующих байтов в Странице Регистров (Рис. 6, адреса с 0200h по 0206h) . Заметим, что некоторые разряды имеют значение «0» по умолчанию. Эти разряды всегда будут читаться как «0», не зависимо от того, что в них записывалось. Содержимое регистров времени, календаря и будильника представлено в ВСD-формате (т.е. в двоично-десятичном коде).

^{**}Во время отработки текущей сессии, содержимое регистров, размещенных по этим адресам, может быть прочитано извне. Однако, первая же попытка записи по этим адресам приведет к принудительному окончанию текущей сессии, при этом запись будет произведена только в регистры, доступные для записи.

Регистры Узла Часов Реального Времени

. оттотр.	ornorphi 7 ona lacob i cambricio bpomerini										
Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0			
0200h	0	Де	есятки секу	нд		Единицы секунд					
0201h	0	Д	есятки мин	ут		Единиц	ы минут				
0202h	0	12/24- ричная система	Второй десяток часов АМ/РМ	Десяток часов	Единицы часов						
0203h	0	0	0	0	0 День недели						
0204h	0	0	Десятки да	аты (числа)		Единицы д	аты (числа))			
0205h	СЕПТ Признак века	0	0	Десяток месяца	Единицы месяца						
0206h		Десят	ки лет		Единицы лет						
0207h	MS	Десяті	ки секунд у	ставки	Единицы секунд уставки						
0208h	MM	Десят	ки минут ус	ставки	E	диницы мі	инут уставк	И			
0209h	МН	12/24- ричная система	Второй десятокча сов уставки A/P	Десяток часов уставки	Единицы часов уставки			И			
020Ah	MD	0	0	0	0 Дни недели уставки						

Часы и календарь

Часы реального времени в DS1921H/Z могут отсчитывать время в двух режимах: в 12-ти и 24-х часовом. За выбор режима отвечает разряд 6 в Регистре Часов (адрес 0202h). Когда он установлен в «1», то выбран 12-часовой режим. В этом режиме разряд 5 отвечает за переключение флага «до/после полудня» (АМ/РМ), причем логическая «1» в этом разряде соответствует значению флага «после полудня». В 24-хчасовом режиме разряд 5 - второй разряд в двоичном коде десятков часов (равен «1» для часов с 20-го по 23-й).

Для определения дня недели DS1921H/Z содержит счетчик с диапазоном от 1 до 7. Соответствие показаний счетчика конкретному дню недели зависит от выбранного стандарта представления дней недели. Обычно значение «1» соответствует воскресенью (американский стандарт) или понедельнику (европейский стандарт).

Логика календаря разработана так, что автоматически учитывает високосные года. Для каждого года, номер которого кратен 4, прибор будет добавлять 29 февраля. Этот механизм действует корректно до 2100 года, не включая его.

DS1921H/Z решает проблему 2000 года. Разряд 7 (CENT) Регистра Месяцев, расположенный по адресу 0205h является флагом века. Когда Регистр Года меняет содержимое с 99 на 00, включается флаг века. Рекомендуется при установке часов записать в бит века «1», если это происходит между 2000 и 2099 годами

Функция «Будильника»

Часы реального времени DS1921H/Z также имеют функцию «будильника». Регистры «будильника» расположены по адресам 0207h÷020Ah. Старший разряд каждого регистра – разряд маски. Если все маскированные разряды равны «0», будильник включается один раз в неделю, когда значения в регистрах хранения времени (адреса 0200h÷0203h) совпадут со значениями, сохраненными в регистрах «будильника». Любое срабатывание «будильника» установит флаг ТАF в Регистре Статуса (адрес 0214h). Мастер 1-Wire-магистрали может задать Условия Поиска в Регистре Управления (адрес 020Еh) для идентификации приборов, в которых сработал «будильник», используя функцию Условный Поиск (см. Команды функции ПЗУ в Главах 4-5 книги «iButton and MicroLAN Standards»).

Разряды Маски Управляющие Срабатыванием «Будильника»

будил	яды ма ьника (ов с 02	7-ые р а	зряды	
MS MM MH MD				
1	1	1	1	Срабатывание раз в секунду.
0	1	1	1	Срабатывание при совпадении секунд (раз в минуту).
0	0	1	1	Срабатывание при совпадении минут и секунд (раз в час).
0	0	0	1	Срабатывание при совпадении часов, минут и секунд (раз в сутки).
0	0 0 0		0	Срабатывание при совпадении дней, часов, минут и секунд (раз в неделю).

ПРЕОБРАЗОВАНИЕ ТЕМПЕРАТУРЫ

Приборы DS1921H и DS1921Z могут измерять температуру с минимальной градацией $1/8^{\circ}$ C. Значение температуры представляется беззнаковым двоичным числом размером 1 байт — T [7...0], которое переводится в теоретический диапазон общей емкостью 32° C. Этот диапазон ограничен значениями 00000000 (00h) и 11111111 (FFh). Правильным температурным отсчетам соответствуют коды от 01h до FEh. Так как DS1921H и DS1921Z имеют различные начальные температуры диапазона, значения двоичного кода зависят от модификации прибора.

Если результат преобразования температуры лежит вне этого диапазона, то запишется значение 00h (если слишком малое) или FFh (если слишком большое). Так как результаты измерения температуры аккумулируются в столбцах гистограммы 0 и 63 (см раздел *«Буфер Последовательных Температурных Отсчетов И Гистограмма»*), данные в этих столбцах имеют неограниченное значение. Поэтому указанный температурный диапазон DS1921H/Z рассматривается, начиная с кода 04h и кончая кодом FBh, что соответствует столбцам гистограммы с 1-го по 62-й.

Если перевести это двоичное число в десятичное, можно вычислить значение температуры по следующим формулам:

$$\vartheta$$
 (°C) = (T [7...0] / 8) + 14,500 (для DS1921H)

$$\vartheta$$
 (°C) = (T [7...0] / 8) – 5,500 (для DS1921Z).

Эта формула верна как для преобразования значений температуры, хранимых в памяти последовательных температурных отсчетов, так и для значений, полученных из Регистра Чтения Температуры (адрес 211h).

Формат Регистра Температурного Преобразования

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0
0211h	T7	Т6	T5	T4	Т3	T2	T1	T0

Чтобы задать значения температурных порогов, следует пользоваться формулами:

Т [7...0] =
$$8 \times \vartheta$$
 (°C) – 116 (для DS1921H)

$$T [7...0] = 8 \times \vartheta (^{\circ}C) + 44 (для DS1921Z).$$

Например, подставив в формулу температуру 23°C, получим число 68 (шестнадцатеричный код 44h) для устройства ТЕРМОХРОН модификации DS1921H и число 228 (шестнадцатеричный код E4h) для устройства ТЕРМОХРОН модификации DS1921Z, которое и можно записать двоичным кодом 01000100 и 11100100 в Регистры Порогов (адреса 20Bh и 20Ch, соответственно).

Формат Регистров Температурных Порогов

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0	
020Bh		Нижний температурный порог.							
020Ch		Верхний температурный порог.							

ПЕРИОД ИЗМЕРЕНИЙ (ЧАСТОТА РЕГИСТРАЦИИ)

Содержимое Регистра Периода Измерений (адрес 020Dh) определяет интервал времени в минутах между соседними температурными преобразованиями в течение сессии. Эта величина может принимать любые целые значения от 1 до 255 и кодируется, как беззнаковое 8-разрядное двоичное число. Если память была очищена (разряд MEMCLR в Регистре Статуса равен «1») и сессия возможна (разряд EM в Регистре Статуса равен «0»), то запись ненулевого значения в Регистр Периода Измерений запустит сессию. Полное описание правильной последовательности действий для запуска сессии см. в разделе «Задание Параметров Работы Прибора» и в примерах.

Формат Регистра Уставки Периода Измерений

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0
020Dh	Количество минут между отдельными температурными отсчетами							

РЕГИСТР УПРАВЛЕНИЯ

Параметры режима регистрации DS1921H/Z устанавливаются путем записи соответствующих данных в специальные регистры. В Регистре Управления (адрес 020Eh) задаются некоторые функции, управляемые значением одного разряда. Этот регистр доступен как для чтения, так и для записи. Если прибор запрограммирован на отработку очередной сессии, любая запись в Регистр Управления повлечет за собой остановку ее отработки и изменит содержимое регистра.

Функциональные назначения отдельных разрядов Регистр Управления объясняются ниже. Разряд 5 не имеет икакой функции, и всегда читается как логический «0» и в него не может быть записана «1».

Формат Регистра Управления

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0
020Eh	EOSC	EMCLR	0	EM	R0	TLS	THS	TAS

Функциональные назначения отдельных разрядов объясняются в таблице ниже. Разряд 5 не имеет никакой функции, и всегда читается как логический «0» и в него не может быть записана «1».

Регистр управления детально (адрес 20Eh)

Обозначение разряда	Назначение разряда	Номер разряда	Описание
EOSC	Включение Встроенного Генератора	b7	Разряд управляет состоянием генератора узла часов реального времени. Когда он устанавливается в «0», генератор начинает работать. Когда он становится равен «1», генератор останавливается, и прибор переходит в малопотребляющий режим хранения данных. Для нормальной работы прибора следует установить этот разряд в «0». Часы должны быть запущены хотя бы на 1 секунду раньше старта сессии.
EMCLR	Разрешение Очистки Памяти	b6	Для реализации процедуры очистки памяти нужно установить значение этого разряда в «1», что вызовет генерацию соответствующей команды устройству управления прибором. Области памяти, где хранятся временные метки, гистограмма, буфер последовательных температурных отсчетов, данные о начале работы, количестве измерений, величине начальной задержки и периоде измерений будут очищены только в том случае, если при следующем доступе к прибору будет дана команда Очистка Памяти. Как только начнется исполнение следующей команды, этот разряд автоматически переключится в «0».
-	не имеет функции	b5	Всегда читается как «0».
EM	Запуск Возможен	b4	Значением этого разряда определяется, начнет ли DS1921H/Z работу сразу, как только будет задано значение периода отсчетов (частоты проса). Для разрешения работы прибора нужно установить этот разряд в «0».

Обозначение разряда	Назначение разряда	Номер разряда	Описание			
RO	Включение/ Выключение Режима Кольцевого Буфера	b3	От состояния этого разряда зависит, будет ли память перезаписываться с поступлением новых данных или процесс записи остановится после заполнения памяти в течение сессии. Установка значения этого разряда в «1» включает режим кольцевого буфера (rollover), и прибор по «кольцу» переписывает данные при заполнении буфера последовательных температурных отсчетов. Если этот разряд установлен в «0», прибор прекращает процедуру записи в сегмент памяти буфера последовательных температурных отсчетов после его полного заполнения. На формирование гистограммы данный разряд не влияет.			
TLS	Условный Поиск По Нижнему Порогу.	b2	Если значение этого разряда равно «1», прибор будет реагирова на команду Условного Поиска при равенстве или снижен контролируемой температуры ниже нижнего установленного поро в течение всего цикла работы (адрес 020Bh).			
THS	Условный Поиск По Верхнему Порогу.	b1	Если значение этого разряда равно «1», прибор будет реагировать на команду Условного Поиска при равенстве или превышении температурой верхнего установленного порога в течение всего цикла работы (адрес 020Ch).			
ТАЅ Условный Поиск По «Будильнику» b0 на команду Условного Поиска при срабатыва течение всего цикла своей работы. Так как отключить, флаг ТАГ обычно установлен в «1			Если значение этого разряда равно «1», прибор будет реагировать на команду Условного Поиска при срабатывании «будильника» в течение всего цикла своей работы. Так как «будильник» нельзя отключить, флаг ТАF обычно установлен в «1» в течение работы. Поэтому в большинстве случаев желательно принудительно установить разряд TAS в «0».			

Задержка начала регистрации измерений (Отложенный Старт)

Содержимое этого регистра (счетчика) определяет, сколько минут прибор будет находиться в состоянии ожидания перед началом процесса регистрации данных. Значение задержки начала регистрации в минутах сохраняется как беззнаковое 16-разрядное двоичное число по адресам 0212h÷0213h. *Максимальное время задержки* — 65535 мин. (то есть 45 дней, 12 часов и 15 минут).

Для обычной сессии, которая начинается сразу после программирования установочных параметров, задержка регистрации измерений устанавливается равной нулю. Если необходимо осуществлять долговременный мониторинг, и объема памяти прибора недостаточно для сохранения всех данных, то можно использовать несколько DS1921H/Z. При этом на втором приборе следует выставить задержку запуска сессии таким образом, чтобы он начал измерять температуру в тот момент, когда закончится рабочий цикл первого прибора (полностью заполнится его буфер последовательных температурных отсчетов) и т. д. по цепочке. Разряд RO (Регистр Управления, адрес 020Eh) во всех таких приборах нужно установить в состояние логического «0» во избежание перезаписи данных. См. раздел «Старт Сессии И Регистрация Данных» и Рис. 11

Регистр Статуса

Регистр Статуса содержит информацию о параметрах статуса прибора и флагах тревог. Каждый из параметров определяется содержимым одного разряда этого регистра. Он расположен по адресу 0214h. Запись в этот регистр не является необходимым для окончания сессии.

Формат Регистра Статуса

Адре	С	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0
0214	h	TCB	MCLRE	MIP	SIP	0	TLF	THF	TAF

Функциональные назначения отдельных разрядов объясняются ниже. Разряды MIP, TLF, THF и TAF принудительно могут быть установлены только в состояние логического «0». Все другие разряды предназначены только для чтения. Разряд 3 не имеет никакой функции, и всегда при чтении возвращает значение логического «0». Никакое логическое значение не может быть принудительно записано в этот разряд.

Регистр Статуса детально (адрес 214h).

Обозначение разряда	Назначение разряда	Номер разряда	Описание.			
ТСВ	Узел преобразования температуры занят.	b7	Если этот разряд содержит «0», значит DS1921H/Z находите процессе выполнения температурного преобразования, совершае автоматически (в течение работы прибора в режиме автоматиче регистрации) или принудительной командой (если прибор зако работу в режиме автоматической регистрации, но была задана ком единичного преобразования). Разряд TCB устанавливается в «0» п запуском преобразования и возвращается в «1» сразу после того результат зафиксируется в Регистре результата температур преобразования (адрес 0211h).			
MEMCLR	Память Очищена.	b6	Если этот разряд содержит «1», значит все страницы памяти с 17-ой и выше, а также данные о начале работы, количестве измерений, начальной задержке и периоде измерений очищены (имеют нулевые значения) командой Очистка Памяти. Разряд переключится в «0», как только произойдет запуск прибора на новую сессию, благодаря записи ненулевого значения в Регистр периода измерений (частоты регистрации) при условии, что разряд ЕМ, также равен «0». Память следует очистить, чтобы корректно осуществить запуск прибора на отработку новой сессии.			
MIP	Цикл Продолжается.	b5	Если этот разряд содержит «1», значит DS1921H/Z был запущен на отработку сессии и рабочий цикл все еще продолжается (незакончен). Прибор начинает работу, если разряд EM Регистра Управления (адрес 020Eh) содержит «0» и в Регистр Периода Измерений (или иначе Регистр Частоты Опроса (адрес 020Dh)) записано ненулевое значение. Бит МIР переключится из «1» в «0», когда рабочий цикл завершится. Это произойдет с первой попыткой записи (команда Копирование Блокнотной Памяти) в любой регистр из диапазона адресного пространства 200h÷213h. Первый цикл записи только остановит работу прибора, но не изменит никакие данные в нем. Другой путь останова работы прибора — прямая запись в Регистр Статуса и установка разряда МIР в «0». Последняя процедура сразу переключит значение разряда. Разряд МIР не может быть установлен в «1» записью в Регистр Статуса.			
SIP	Измерение Температуры.	b4	Если этот разряд содержит «1», значит DS1921H/Z находится в режиме автоматической регистрации температуры (т.е. в состоянии отработки сессии). Выборка производится в момент переключения показаний секунд с 59 в 00. Значение разряда переключается из «0» в «1» приблизительно за 250мс до начала температурного преобразования, позволяя схеме «пробудиться». Преобразование включает в себя фазу «пробуждения», длящуюся максимум 875мс. В течение этого времени страницы памяти с 17-ой и выше доступны для чтения, но могут содержать ошибочные данные.			
-	не имеет функции	b3	Всегда читается как «0».			
TLF	TLF Флаг Низкой b2		Наличие логической «1» в данном разряде показывает, что в течение работы прибора величина температуры опускалась до или ниже значения нижнего предела, заданного в Регистре Нижнего Порога. Флаг сбрасывается в любое время записью в этот разряд логического «0». Этот флаг должен быть сброшен перед началом новой сессии.			
THF	Флаг Высокой Температуры.	b1	Наличие логической «1» в данном разряде показывает, что в течение работы прибора величина температуры достигала или превышала значение верхнего предела, сохраненное в Регистре Верхнего Порога. Флаг сбрасывается в любое время записью в этот разряд логического «0». Этот флаг должен быть сброшен перед началом новой сессии			
TAF	Флаг «Будильника»	b0	Если этот разряд читается как «1», значит, сработал «будильник» (см. раздел «ХРАНЕНИЕ ВРЕМЕНИ»). Флаг сбрасывается записью в этот разряд логического «0». Поскольку работа «будильника» не может быть запрещена, во время отработки сессии этот флаг обычно находится в состоянии «1».			

НАЧАЛО ОТРАБОТКИ СЕССИИ

Отдельный набор регистров выделен для хранения момента начала отработки новой сессии. В регистрах этого набора содержится время и дата первого температурного преобразования сессии. Последующие температурные преобразования будут осуществляться с частотой, определяемой значением, содержащимся в регистре Частота Опроса. Температурные преобразования производятся в момент переключения (смены) минут.

Формат Регистров Начала Отработки Сессии

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0
0215h	0	Десятки минут				Единиц	ы минут	
0216h	0	12/24- часовая система	Второй десяток часов.* АМ/РМ	Десяток часов	Единицы часов			
0217h	0	0	Десятки	1 даты		Единицы д	ней (числа)	
0218h	0	0	0	Десяток месяца	Единицы месяцев			
0219h	Десятки лет					Едини	цы лет	

⁻ в 24-часовом режиме работы узла часов реального времени этот разряд отображает второй десяток часов, а в 12-часовом режиме утро/вечер.

Счетчик Отсчетов Текушей Сессии

Счетчик отсчетов текущей сессии указывает, сколько температурных преобразований (измерений) имели место в течение текущей сессии (если разряд МІР=1) или в течение последней сессии (если разряд МІР=0). Содержимое представляется 24-разрядным целым числом без знака. Содержимое этого счетчика может быть сброшено благодаря отработке команды Сброс Памяти.

Формат Регистра Счетчика Отсчетов Текущей Сессии

Адрес	Разряд7	Разряд6	Разряд5	Разряд4	Разряд3	Разряд2	Разряд1	Разряд0		
021Ah	Младший байт									
021Bh		Средний байт								
021Ch		Старший байт								

СЧЕТЧИК ВСЕХ ОТСЧЕТОВ ВЫПОЛНЕННЫХ ПРИБОРОМ

Содержимое счетчика всех отсчетов, выполненных прибором, показывает, сколько температурных отсчетов (измерений) имело место, с момента его активации (начальной разблокировки). Содержимое представляется 24-разрядным целым числом без знака. Максимальное значение, которое может быть считано из этого регистра – 16777215. Оно является априори выше любого реально возможного срока службы (продолжительности жизни, определяемой емкостью встроенного литиевого элемента) DS1921H/Z. Содержимое этого счетчика никогда не может быть сброшено с помощью программного обслуживания устройства.

Формат Регистра Счетчика Всех Отсчетов Выполненных Прибором

	-p.mar arrange - arrang										
Адрес	Разряд7	Разряд7 Разряд6 Разряд5 Разряд4 Разряд		Разряд3	Разряд2	Разряд1	Разряд0				
021Dh	Младший байт										
021Eh		Средний байт									
021Fh		Старший байт									

БУФЕР ПОСЛЕДОВАТЕЛЬНЫХ ТЕМПЕРАТУРНЫХ ОТСЧЕТОВ И ГИСТОГРАММА

Запрограммированный и запущенный для сбора информации ТЕРМОХРОН записывает результаты измерений одновременно байт за байтом, как в память буфера последовательных температурных отсчетов, так и в память, хранящую данные для гистограммы. В буфере последовательных температурных отсчетов может содержаться до 2048 значений температуры, полученных через равные промежутки времени. Первое измеренное значение температуры после запуска сохраняется по адресу 1000h, второе - по адресу 1001h и т.д. Используя данные: о времени старта (начале процесса (рабочего цикла) измерений), об интервале между измерениями, содержимое Счетчика Отсчетов Текущей Сессии и сведения о включении режима «rollover» (кольцевого буфера), всегда можно получить достоверную информацию о времени и дате каждого конкретного измерения, сохраненного в буфере последовательных отсчетов.

После заполнения буфера последовательных температурных отсчетов (2048 измерений) DS1921H/Z имеет два возможных варианта продолжения отработки рабочего алгоритма. С отключенным режимом кольцевого буфера (rollover) (бит RO=0) прибор заполнит память первыми 2048 отсчетами. Последующие отсчеты не будут сохраняться в буфере последовательных температурных отсчетов, но данные гистограммы и выходов за температурные пороги продолжат обновляться. При включенном режиме кольцевого буфера (бит RO=1) 2049-е значение будет перезаписано по адресу 1000h и так далее по кольцу. В этом случае прибор будет хранить сведения о 2048 последних измерениях.

При построении гистограммы DS1921H/Z использует 64 «столбца» («кармана»), данные о них содержатся в памяти прибора, начиная с адреса 0800h. Каждому столбцу соответствует 16-битный не сбрасывающийся при переполнении двоичный счетчик, увеличивающий свои показания на «1» при каждом попадании измеренного значения в связанный с ним температурный диапазон. Данные каждого «столбца» (2 байта) хранятся по соседним адресам, и младший байт имеет меньший адрес. Так «столбец» 0 занимает адреса 0800h÷0801h, «столбец» 1 – адреса 0802h÷0803h, и т. д., заканчивая «столбцом» 63 (087Eh÷087Fh), подробнее это показано на рис.7. Номер кармана, значение в котором должно быть увеличено после очередного температурного преобразования, выполненного прибором, определяется с учетом ограничений кода, подробно описанных в разделе «Преобразование температуры». Т.е. иначе номер «столбца», в который необходимо внести изменения после очередного температурного преобразования, определяется шестью старшими битами (отбрасыванием двух младших значащих бит) кода температурного значения. Так ,например, для DS1921H карман с номером 0 соответствует температурам от +14,500°C и ниже до +14,875°C, карман с номером 1 – температурам от +15,000°C до +15,375°C и т. д. Карман с номером 63 ассоциируется с температурами от +46,000°C до +46,375°C и выше. Значения, не попадающие в этот диапазон температур, будут регистрироваться, как коды 00h или FFh.

Рис.7. КАРМАНЫ ПАМЯТИ ГИСТОГРАММЫ (СООТНОШЕНИЕ «СТОЛБЦА» ГИСТОГРАММЫ И ТЕМПЕРАТУРЫ)

VI I EIVII IEPAI J	וט ו		T T	
Код температурного преобразования	Температурный эквивалент диапазона, связанный с карманом гистограммы для DS1921H	Температурный эквивалент диапазона, связанный с карманом гистограммы для DS1921Z	Номер кармана гистограммы	Место кармана гистограммы в адресном пространстве прибора
00h	+14,500°С и ниже	-5,500°C и ниже	0	с 800h до 801h
01h	+14,625°C	-5,375°C	0	с 800h до 801h
02h	+14,750°C	-5,250°C	0	с 800h до 801h
03h	+14,875°C	-5,125°C	0	с 800h до 801h
04h	+15,000°C	-5,000°C	1	с 802h до 803h
05h	+15,125°C	-4,875°C	1	с 802h до 803h
06h	+15,250°C	-4,750°C	1	с 802h до 803h
07h	+15,375°C	-4,625°C	1	с 802h до 803h
08h	+15,500°C	-4,500°C	2	с 804h до 805h
F7h	+45,375°C	+25,375°C	61	с 87Ah до 87Bh
F8h	+45,500°C	+25,500°C	62	с 87Ch до 87Dh
F9h	+45,625°C	+25,625°C	62	с 87Ch до 87Dh
FAh	+45,750°C	+25,750°C	62	с 87Ch до 87Dh
FBh	+45,875°C	+25,875°C	62	с 87Ch до 87Dh
FCh	+46,000°C	+26,000°C	63	с 87Eh до 87Fh
FDh	+46,125°C	+26,125°C	63	с 87Eh до 87Fh
FEh	+46,250°C	+26,250°C	63	с 87Eh до 87Fh
FFh	+46,375°С и выше	+26,375°С и выше	63	с 87Eh до 87Fh

Так как каждый «столбец» занимает 2 байта, то «высота» «столбца» может иметь значения от 0 до 65535 (в двоичном коде). Если же количество температурных отсчетов, попадающих в диапазон одного «столбца» превысит 65535, «высота столбца» по-прежнему будет равна максимальному значению. Например, при условии, что период измерений равен 1 минуте, и все измеренные значения попадают в диапазон одного и того же «столбца», его «высота» достигнет максимума через 45 дней.

ПАМЯТЬ ТЕМПЕРАТУРНЫХ ПРЕДЕЛОВ

При некоторых применениях важно не только периодически считывать температуру, но и регистрировать, когда и на какое время она выходила за допустимые границы. DS1921H/Z способен выполнять и такую функцию. Границы температурного диапазона, выход за пределы которых должен контролироваться прибором, определяется значениями, хранимыми в Регистрах Температурных Порогов (адреса 20Bh и 20Ch). Эти значения задают верхний и нижний пороги (пределы) для контролируемой температуры (см. раздел «Преобразование Температуры» для формата данных, в котором записываются эти значения). Если измеренное значение температуры достигнет или превысит значение верхнего или нижнего порога, DS1921H/Z зарегистрирует этот факт и установит флаги THF или TLF соответственно в Регистре Статуса (адрес 214h). Благодаря этому мастер 1-Wire-магистрали, обслуживающий ТЕРМОХРОН, может быстро идентифицировать такие приборы, если заданы соответствующие параметры поиска (см. описание команды *«Условный Поиск ПЗУ»*). Дополнительно прибор фиксирует момент времени, когда произошел каждый факт нарушения и отсчитывает продолжительность любого из подобных «выходов» за установленные границы.

Временные метки и продолжительности «выходов» за нижний порог сохраняются по адресам 0220h÷024Fh (48 байт), а временные метки и продолжительности «выходов» за верхний порог по адресам 0250h÷027Fh (48 байт) (см. рис.8). Это позволяет записать информацию о 24-х фактах «выхода» за пределы (по 12 для каждого из двух порогов). Дата и время «выхода» за каждый предел определяются прибором благодаря использованию содержимого Регистров Начала Сессии и времени между соседними измерениями (частота регистрации).

Устройства DS1921H/Z, которые при отработке сессии зафиксировали нарушение температурных порогов, идентифицируются мастером 1-Wire-магистрали, при использовании функции Условного Поиска (см. ниже «Команды Функций ПЗУ»), при условии, что выбраны соответствующие Условия Поиска (адрес 20Eh).

Рис 8. ТАБЛИЦА MOMEHTOB НАЧАЛА И ПРОДОЛЖИТЕЛЬНОСТИ НАРУШЕНИЯ УСТАНОВЛЕННЫХ ТЕМПЕРАТУРНЫХ ПОРОГОВ.

АДРЕС	ОПИСАНИЕ	ВЫХОД ЗА ПОРОГ		
0220h	Счетчик Отсчетов (младший байт)			
0221h	Счетчик Отсчетов (средний байт)	Duvon oo uuwuux nonor Not		
0222h	Счетчик Отсчетов (старший байт)	Выход за нижний порог №1		
0223h	Продолжительность выхода за порог (в отсчетах)			
0224h ₃ 0227h	Временная метка и продолжительность выхода	Выход за нижний порог №2		
0228h ₃ 024Fh	Временные метки и продолжительности выходов	Выходы за нижний порог №3÷№12		
0250h	Счетчик Отсчетов (младший байт)			
0251h	Счетчик Отсчетов (средний байт)	Выход за верхний порог №1		
0252h	Счетчик Отсчетов (старший байт)	овыход за верхний порог № 1		
0253h	Продолжительность выхода за порог (в отсчетах)			
0254h ₃ 0257h	Временная метка и продолжительность выхода	Выход за верхний порог №2		
0258h ₃ 027Fh	Временные метки и продолжительности выходов	Выходы за верхний порог №3÷№12		

Прибор сохраняет временную метку выхода за один из установленных порогов, копируя содержимое Счетчика Отсчетов Текущего Цикла (3 байта) в этот момент, причем младший байт имеет меньший адрес. По следующему адресу прибор записывает количество измерений, произведенных им, пока температура оставалась за этим порогом (продолжительность выхода). Если продолжительность выхода превысит 255 измерений, а температура по-прежнему будет лежать вне диапазона, заданного одним из порогов, то DS1921H/Z запишет следующую временную метку и начнет считать продолжительность уже следующего выхода за этот же порог. Таким образом, любой долговременный выход за один из установленных пределов прибор разбивает на несколько выходов, каждый длительностью в 255 измерений. Если температура вернулась в диапазон раньше времени 255-го измерения, значение продолжительности последнего выхода больше не увеличивается в процессе измерений. Когда она снова выйдет за этот же порог, будет зарегистрирована еще одна следующая временная метка, и по следующему адресу будет записана продолжительность этого выхода. Данный алгоритм выполняется идентично для каждого из порогов.

ЗАДАНИЕ ПАРАМЕТРОВ РАБОТЫ ПРИБОРА

Основной задачей устройства ТЕРМОХРОН является запись температуры (мониторинг состояния) термочувствительного объекта, при его перемещении или транспортировке с одного места в другое. Обычно ограниченность пространства и соображения экономии не позволяют осуществлять мониторинг таких объектов с помощью датчиков, непосредственно связанных с компьютером. Так как DS1921H/Z имеет достаточно малые габариты, то его можно прикрепить к большинству объектов, поэтому, перемещаясь вместе с ними, он будет регистрировать их температуру. Для выполнения этой задачи прибор прежде нужно запрограммировать.

Для записи прибором правдивой информации о «температурной истории» объекта, сначала необходимо установить его часы/календарь на правильное время и дату. Время может быть установлено по Гринвичу или по любому временному стандарту, который используют отправитель и получатель груза. Для этого генератор узла часов реального времени должен быть запущен (EOSC = 0) хотя бы на одну секунду (for at least one second). Установка «будильника» при этом необязательна. Сегменты памяти, предназначенные для хранения временных меток, продолжительности событий выхода за установленные пределы, гистограммы, буфер последовательных температурных отсчетов, а также регистры времени старта, счетчика отсчетов, задержки старта и периода измерений, должны быть предварительно очищены командой Очистка Памяти. В случае, если имели место выходы температуры за пороги в предыдущей сессии, нужно также сбросить флаги THF и TLF. Чтобы прибор мог осуществлять работу, нужно выставить флаг $\overline{\rm EM}$ в «0». Это главные установки, которые следует выполнить обязательно, не зависимо от типа объекта, а также особенностей и параметров производимых температурных измерений.

Следующими должны быть записаны значения верхнего и нижнего порогов (пределов), определяющих допустимый температурный диапазон регистрируемых значений температуры. Способ преобразования значений температуры, которые сохраняются в регистрах порогов в двоичном коде, подробно описан выше в разделе «Преобразование Температуры».

Состояние разрядов поиска в Регистре Управления (разряды с 0 по 2), не влияет на работу прибора. Если несколько подобных приборов подключены к одной 1-Wire-магистрали, установка условий поиска позволит каждому из них реагировать на команду Условный Поиск при срабатывании «будильника» или при выходе контролируемой температуры за заданные значения порогов (см. раздел «Команды функций ПЗУ»).

Установка режима кольцевого буфера (разряд RO) и периода (интервала) измерений (частоты регистрации) зависит от конкретных требований мониторинга. Если пользователю нужны только последние данные об объекте, следует включить режим кольцевого буфера (разряд RO = 1). В противном случае для определения периода измерений нужно разделить требуемую продолжительность общего цикла мониторинга в минутах на 2048. Например, если мониторинг нужно осуществлять в течение 10 дней (это составляет 14400 минут), то период измерений следует установить равным 7 минут (при этом объема буфера последовательных температурных отсчетов хватит как раз на 10 дней). Так как громоздкие объекты не изменяют свою температуру быстро при смене окружающей температуры, то даже с периодом измерений в 10 минут не стоит опасаться потери значимой информации. Если необходимо осуществлять долговременный мониторинг, и объема памяти прибора недостаточно для сохранения всех данных, то можно использовать несколько приборов DS1921H/Z. При этом на втором приборе следует выставить задержку таким образом, чтобы он начал измерять температуру в тот момент, когда закончится рабочий цикл первого прибора (полностью заполнится его буфер последовательных температурных отсчетов) и т. д. по цепочке. Разряд RO во всех таких приборах нужно установить в «0» во избежание перезаписи данных. Значение задержки старта в минутах сохраняется при этом как беззнаковое 16разрядное двоичное число в ячейках с адресами 0212h÷0213h. Максимальное время задержки -65535 минут (то есть 45 дней, 12 часов и 15 минут). Задержка старта определяет время между началом сессии и первым измерением рабочего цикла.

После установки разряда RO и значения задержки старта задается последний необходимый параметр - период измерений (частота регистрации) в Регистре Периода Измерений. Период измерений может принимать значения от 1 минуты до 255 минут, кодируемое как беззнаковое двоичное 8-разрядное число. Как только в Регистр Периода Измерений произведена запись, DS1921H/Z устанавливает флаг MIP (работа продолжается), сбрасывая при этом флаг MEMCLR (память очищена). По истечении времени, определяемого в Регистре Задержки Начала Сессии, прибор будет ждать окончания следующей минуты, после чего проснется, скопирует данные о текущем времени и дате в Регистры Начала Запуска и выполнит первое температурное преобразование в сессии. При этом увеличатся на «1» показания Счетчика Отсчетов Текущей Сессии и Счетчика Всех Отсчетов. Все последующие измерения будут производиться в момент переключения значения минут в часах через одинаковый промежуток времени, заданный в Регистре Периода Измерений. Для оперативного контроля работы устройства ТЕРМОХРОН значения, содержащиеся в его памяти можно читать в любое время извне в ходе отработки режима оперативной регистрации. Во избежание конфликтов доступа к памяти следует соблюдать осторожность при реализации этой процедуры (см. раздел «КОНФЛИКТЫ ДОСТУПА К ПАМЯТИ»).

После начала работы прибор сохраняет содержимое Страницы Регистров начиная с Регистров Порогов до Счетчика Общего Числа Событий в символьной форме в энергонезависимом ОЗУ. Эта область памяти функционирует независимо от памяти, используемой для записи результатов измерения. Однако не следует пытаться в ходе цикла регистрации записать какую-либо информацию самостоятельно в область Страницы Регистров, так как это приведет к остановке рабочего цикла прибора.

КОМАНДЫ ФУНКЦИЙ ПАМЯТИ И КОМАНДЫ УПРАВЛЕНИЯ

Алгоритм на Рис.10 описывает протоколы, необходимые для доступа к памяти и регистрам специального назначения DS1921H/Z. Пример, как использовать эти и другие функции для установки DS1921H/Z на выполнение сессии, приведен в разделе «ПРИМЕР: ПОДГОТОВКА И ЗАПУСК НОВОЙ СЕССИИ». Связь между ведущим 1-Wire-магистрали и устройством DS1921H/Z производится со стандартной скоростью (по умолчанию, OD = 0) или в ускоренном режиме (OD = 1). Внутренний доступ к памяти в течение сессии имеет приоритет над внешним доступом через 1-Wire-интерфейс. Это может повлиять на команды чтения памяти, описанные ниже (см. раздел «КОНФЛИКТЫ ДОСТУПА К ПАМЯТИ»).

АДРЕСНЫЕ РЕГИСТРЫ И СТАТУС ПЕРЕДАЧИ

Для последовательной передачи данных DS1921H/Z используют регистры: TA1, TA2 и E/S (см. Рис. 9). Регистры TA1 и TA2 должны содержать *«начальный адрес»* или *«загрузочный адрес»*, куда данные будут записаны или откуда данные будут отправлены мастеру 1-Wire-магистрали командой Чтение. Регистр E/S действует при этом как байт счетчика и регистр статуса передачи. Он используется для подтверждения правильности данных при работе с командой Запись. Поэтому мастер 1-Wire-магистрали может только читать этот регистр. Младшие 5 разрядов в регистре E/S показывают адрес последнего байта, который был записан в блокнотную память. Этот адрес называется «конечное смещение». Разряд 5 регистра E/S называется PF (partial byte flag) или «флаг частичного байта». Он выставляется, если количество разрядов, посланных мастером, не кратно восьми. Содержимое разряда 6 всегда равно «0». Заметим, что младшие 5 разрядов «начального адреса» также определяют адрес внутри блокнотной памяти, начиная с которого будут храниться промежуточные данные. Этот адрес называется «смещение байта» (byte offset). Например, если «начальный адрес» для команды Запись 13Ch, блокнотная память будет сохранять приходящие данные, начиная со «смещения байта» 1Ch и заполнится после прихода 4-х байтов. Соответствующее «конечное смещение» в этом примере 1Fh. Для лучшей экономии скорости и эффективности «начальный адрес» для записи нужно установить на начало новой страницы, таким образом, «смещение байта» будет равно «0». Хотя программно доступен весь массив блокнотной памяти (объемом 32 байта), «конечное смещение» все равно будет равно 1Fh. Однако можно записать один или несколько смежных байтов где-нибудь внутри страницы. «Конечное смещение» вместе с флагом РF и флагом переполнения служат, главным образом, для проверки мастером правильности данных после команды Запись. Самый старший бит регистра E/S, называемый AA (authorization accepted – принятое разрешение), выступает как флаг, сигнализирующий о том, что данные, сохраненные в блокнотной памяти, уже скопированы в предназначенный для них сегмент памяти. Запись данных в блокнотную память сбрасывает этот флаг

Рис.9. АДРЕСНЫЕ РЕГИСТРЫ DS1921H/Z

Разряд №	7	6	5	4	3	2	1	0
Начальный адрес (ТА1)	Т7	Т6	T5	T4	Т3	T2	T1	ТО
Начальный адрес (ТА2)	T15	T14	T13	T12	T11	T10	Т9	Т8
Конечный адрес и данные статуса (E/S) (доступен только для чтения)	AA	0	PF	E4	E3	E2	E1	E0

ЗАПИСЬ С ПРОВЕРКОЙ

При записи данных в DS1921H/Z блокнотная память используется как промежуточная область хранения. Сначала ведущий выдает команду Запись В Блокнотную Память, для определения желаемого *«начального адреса»*, начиная с которого данные будут записываться в блокнотную память. Следующий шаг — посылка ведущим 1-Wire-магистрали команды Чтение Блокнотной Памяти для проверки данных. Как заголовок блокнотной памяти, DS1921H/Z посылает требуемый *«начальный адрес»* (ТА1 и ТА2) и содержимое регистра E/S. Если выставлен флаг PF, значит данные, достигшие блокнотной памяти, неверны. Ведущему не нужно продолжать чтение, он может начинать новую попытку записи в блокнотную память. Точно также установленный флаг АА свидетельствует, что команда Запись не была опознана прибором. Если все прошло успешно, оба флага будут сброшены, и *«конечное смещение»* будет показывать адрес последнего бита, записанного в блокнотную память. Теперь ведущий 1-Wire-магистрали может продолжить проверку каждого разряда информации. После окончания проверки ведущий выдает команду Копирование Блокнотной Памяти. Эта команда должна следовать сразу за данными трех адресных регистров ТА1, ТА2 и Е/S, после того, как ведущий прочел их, проверяя содержимое блокнотной памяти. Как только DS1921H/Z получит байты из блокнотной памяти, он скопирует данные в предназначенные для них сегменты внутреннего массива памяти, начиная с *«начального адреса»*.

Запись В Блокнотную Память (0Fh)

После выбора этой команды ведущий должен выставить 2-хбайтовый начальный адрес, после чего следуют данные, которые должны быть записаны в блокнотную память. Данные будут записываться, начиная со смещения байта (Т4:Т0). Конечное смещение (Е4:Е0) будет смещением байта, при котором ведущий остановит запись данных. Принимаются только полные байты. Если последний байт данных передан не полностью, то его содержимое игнорируется и выставляется флаг частичного байта PF.

При выполнении этой команды встроенный CRC-генератор DS1921H/Z (см. Рис. 16) вычисляет CRC-код (контрольную сумму) всего потока данных, начиная с кода команды и заканчивая последним байтом данных, посланных ведущим. Этот CRC-код генерируется при помощи полинома CRC16, сбрасывая CRC-генератор и сдвигая код команды Запись В Блокнотную Память (0Fh), начальные адреса TA1 и TA2 в том порядке, как они

посылались ведущим, а также и все байты данных. Ведущий может прекратить выполнение команды в любое время. Однако если конечное смещение имеет вид 11111b, мастер может послать 16 временных слотов чтения и получить инвертированный CRC16. генерируемый DS1921H/Z.

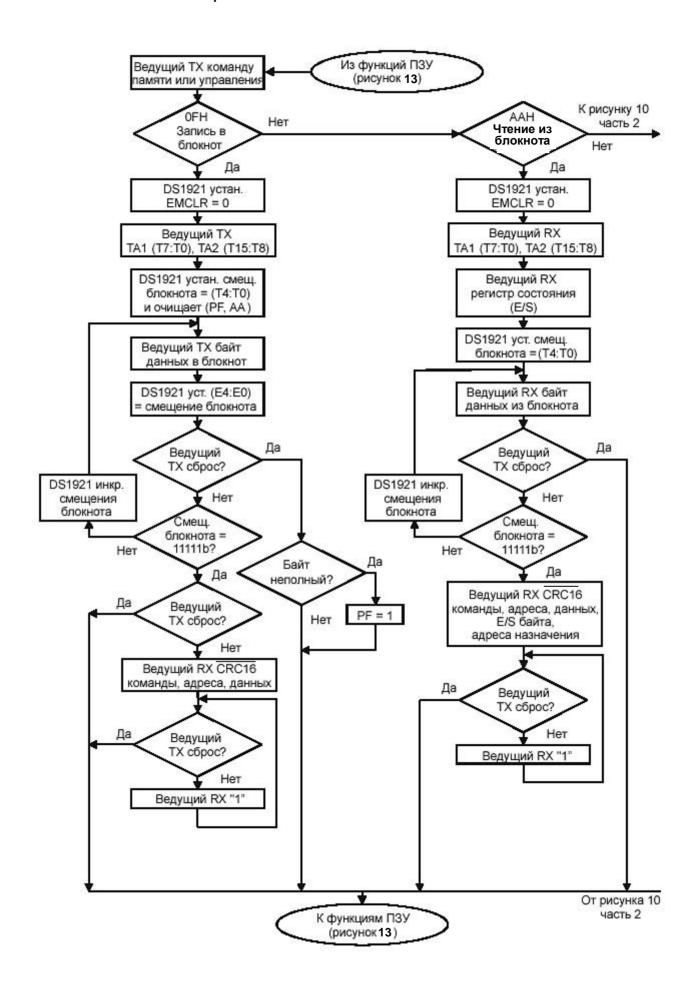
Замечание: Регистры с 200h по 213h в странице регистров защищены в течение сессии. См. Рис. 6 для определения типа доступа в течение сессии и между сессиями.

Чтение Блокнотной Памяти [AAh]

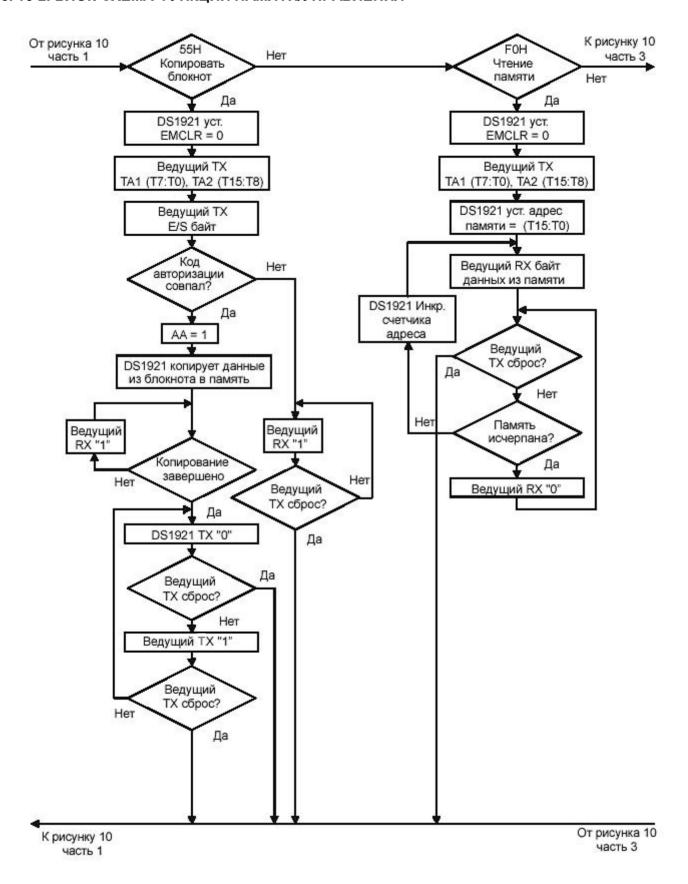
Эта команда используется для проверки данных в блокнотной памяти и начальных адресов. После выбора этой команды ведущий начинает чтение. Первые два байта будут начальным адресом. Следующий байт будет являться конечным смещением/байтом статуса данных (E/S), за ним следуют данные из блокнотной памяти, начиная со смещения байта (Т4:Т0), как показано на Рис. 9. Не зависимо от фактического конечного смещения ведущий может читать данные до конца блокнотной памяти, после чего он получит инвертированный CRC16 кода команды, начальных адресов ТА1 и ТА2, байта E/S и данных блокнотной памяти, расположенных по начальному адресу. После получения CRC ведущий 1-Wire-магистрали будет читать логические «1» от устройства DS1921H/Z вплоть до поступления импульса сброса.

Копирование Блокнотной Памяти [55h]

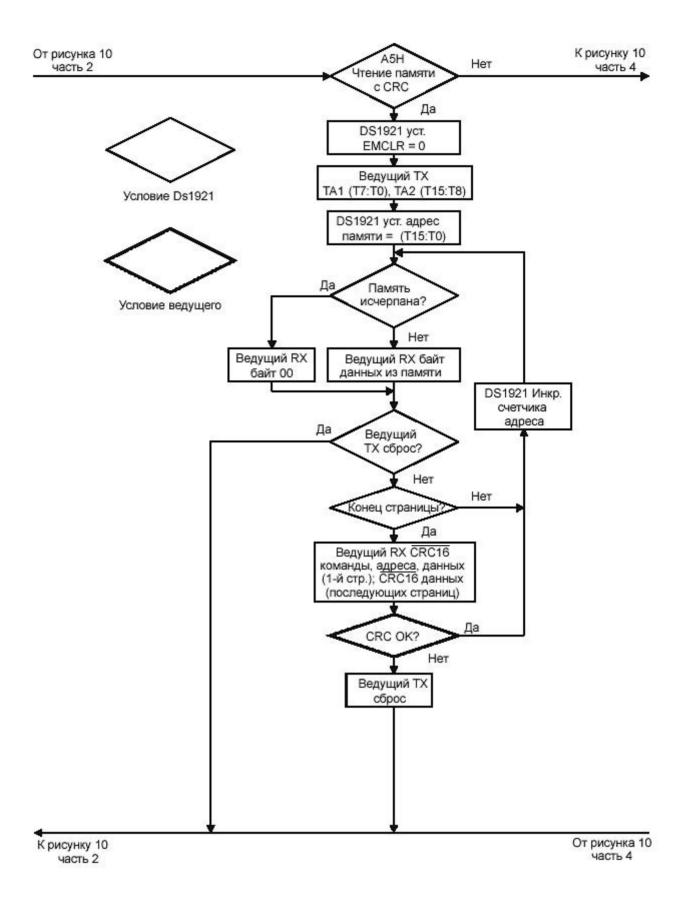
Эта команда используется для копирования данных из блокнотной памяти в области памяти, доступные для записи. Применяя эту команду к Регистру Периода Измерений можно осуществить старт сессии при наличии нескольких предварительных условий. См. раздел «ЗАДАНИЕ ПАРАМЕТРОВ РАБОТЫ ПРИБОРА» и блок-схему на Рис. 11. После выбора команды Копирование Блокнотной Памяти ведущий 1-Wire-магистрали должен обеспечить 3-байтовый код авторизации, который может быть получен путем чтения блокнотной памяти (для проверки). Этот код должен точно соответствовать данным, содержащимся в 3 адресных регистрах в следующем порядке: TA1, TA2 и E/S. Если код совпадает, установится флаг AA (авторизация принята), и начнется копирование. Последовательность чередующихся «0» и «1» будет передаваться после завершения копирования данных до тех пор, пока ведущий не выдаст импульс сброса. Во время процесса копирования любая попытка сброса ведомого прибора будет проигнорирована. Копирование одного байта обычно занимает около 2 мкс.


Данные, подлежащие копированию, определяются тремя адресными регистрами. Данные блокнотной памяти будут копироваться от начального смещения до конечного смещения, начиная с начального адреса. С помощью этой команды можно скопировать в любую область памяти от 1 до 32 байт. Флаг АА будет оставаться выставленным (в состоянии «1»), пока не будет сброшен следующей командой Запись В Блокнотную Память. Необходимо заметить, что попытка использовать команду Копирование Блокнотной Памяти к адресам с 0200h по 0213h приведет к остановке сессии.

Чтение Памяти [F0h]


Эта команда может быть использована для чтения всех областей памяти. После выбора команды ведущий 1-Wire-магистрали посылает 2-байтовый начальный адрес. Затем ведущий читает данные, начиная с начального адреса, и может продолжать чтение до конца памяти, до тех пор, пока не будут читаться одни нули. Важно понимать, что регистры начального адреса будут содержать необходимый адрес. Бит E/S не используется этой командой.

Аппаратные средства DS1921H/Z обеспечивают возможность безошибочной записи в память. Для защиты данных в среде 1-Wire при чтении и одновременном увеличении скорости передачи рекомендуется передавать данные пакетами размером с одну страницу памяти. Такой пакет обычно содержит 16-битный СRC-код страницы для обеспечения быстрой и безошибочной передачи данных, что сокращает время проверки, в том случае, если принимаемые данные корректны (см. «Application Note 114» для рекомендуемой структуры файла).


Рис. 10-1. БЛОК-СХЕМА ФУНКЦИЙ ПАМЯТИ/УПРАВЛЕНИЯ

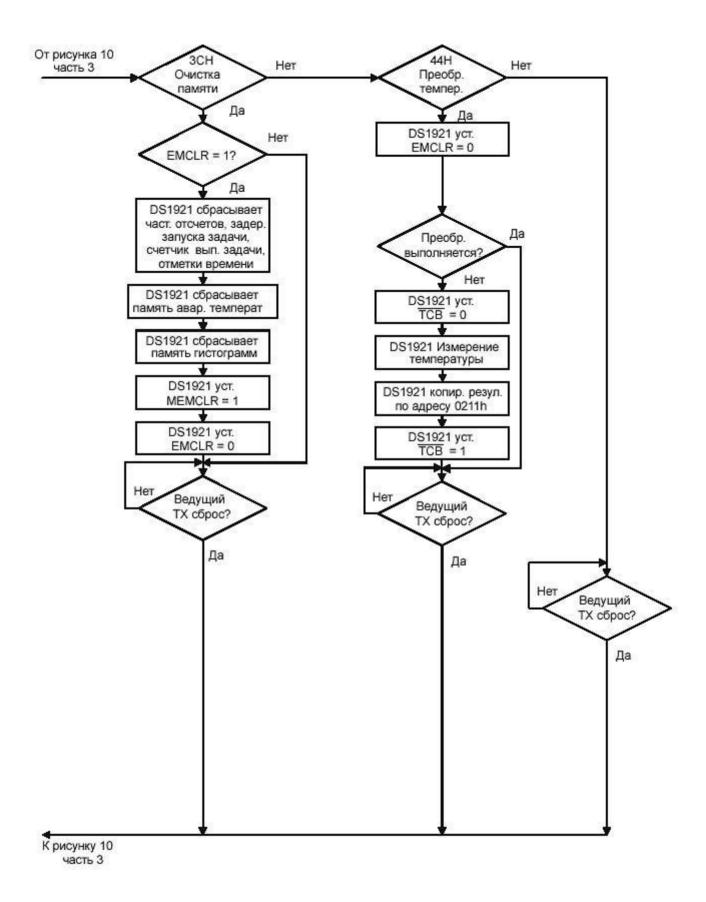

Рис. 10-2. БЛОК-СХЕМА ФУНКЦИЙ ПАМЯТИ/УПРАВЛЕНИЯ

Рис. 10-3. БЛОК-СХЕМА ФУНКЦИЙ ПАМЯТИ/УПРАВЛЕНИЯ

Рис. 10-4. БЛОК-СХЕМА ФУНКЦИЙ ПАМЯТИ/УПРАВЛЕНИЯ

Чтение Памяти С CRC-кодом [A5h]

Эта команда используется для чтения данных памяти, которые не могут быть пакетированы, таких как Страница Регистров и данные, сохраненные прибором в течение сессии. Команда работает также, как команда Чтение Памяти, за исключением того, что за последним байтом страницы памяти следует 16-битный СRС-код, генерируемый и передаваемый DS1921H/Z.

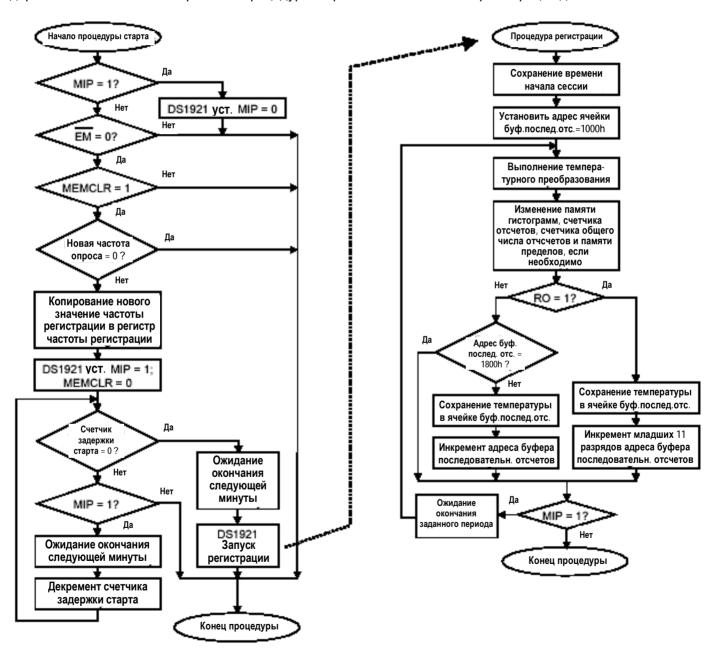
После передачи кода команды Чтение Памяти С CRC-кодом ведущий 1-Wire-магистрали посылает 2-байтовый адрес (ТА1=Т7:Т0, ТА=Т15:Т8), который указывает место расположения начального байта. При последующих временных слотах чтения данных ведущий получает данные от DS1921H/Z, начиная с начального адреса и продолжая до конца 32-байтовой страницы. После этого ведущий, послав 16 дополнительных слотов чтения, получит инвертированный 16-битный CRC-код. С последующими временными слотами чтения ведущий будет получать данные, начиная с начала следующей страницы, за которыми снова будет следовать инвертированный СКС-код этой страницы. Эта последовательность действий продолжается до тех пор, пока ведущий не передаст импульс сброса.

При первом выполнении команды Чтение Памяти С CRC-кодом 16-битный CRC-код является результатом сдвига в очищенном СRC-генераторе байта команды, 2 байтов адреса и содержащихся в памяти данных. При последующих выполнениях этой команды CRC-код является результатом сдвига только данных. После прочтения CRC-кода последней страницы памяти ведущий 1-Wire-магистрали будет получать логические «0» от DS1921H/Z и инвертированные CRC-коды этих виртуальных страниц до подачи импульса сброса. Выполнение этой команды может быть прекращено в любое время выработкой импульса сброса.

Очистка Памяти [3Ch]

Эта команда используется для очистки данных о периоде измерений (частоте регистрации), о задержке старта, о начале рабочего цикла и содержимого счетчика измерений текущего цикла, расположенных на странице регистров, а так же памяти температурных пределов и памяти гистограммы. Эти области памяти должны быть очищены перед установкой прибора на следующую сессию. Команда Очистка Памяти не очищает буфер последовательных температурных отсчетов и не сбрасывает флаги выходов за пороги и флаг срабатывания «будильника» в Регистре Статуса. Часы реального времени должны быть включены не менее, чем за секунду перед выбором этой команды. Для функционирования данной команды разряд EMCLR в Регистре Управления нужно установить в «1». Команда Очистка Памяти подается во время следующего доступа к функциям памяти прибора (временный доступ). Подача любой другой команды функций памяти сбросит разряд EMCLR. Выполнение этой команды занимает около 500 мкс и не может быть прервано. Однако, в течение этого времени ведущий может сгенерировать импульс сброса, любую команду для ПЗУ, начать обмен с областью дополнительной памяти или прочитать Регистр Статуса и данные из регистров узла часов реального времени. По завершении команды разряд MEMCLR в Регистре Статуса устанавливается в «1», а разряд EMCLR в «0».

Преобразование Температуры [44h]


Эта команда используется для измерения текущей температуры, если заданный прибору рабочий цикл автоматической регистрации закончился или остановлен (МІР = 0). Результат измерения при этом находится по адресу 0211h Страници Регистров. Выполнение команды занимает 90 мс и не может быть прервано. В течение этого времени доступны Команды Функций ПЗУ и команды Памяти/Управления.

Старт Сессии И Регистрация Данных

Прибор DS1921H/Z не имеет специальной команды для старта сессии. Вместо этого сессия стартует посредством записи ненулевого значения в Регистр Периода Измерений, используя команду Копирование Блокнотной Памяти. Как показано на Рис. 11, новая сессия может стартовать, только если предыдущая сессия завершилась (МІР = 0), память очищена (MEMCLR = 1) и запуск новой сессии разрешен (EM = 0). Если новое значение периода измерений отлично от «0», то оно будет скопировано из блокнотной памяти в Регистр Периода Измерений. В то же самое время бит MIP установится в «1», и разряд MEMCLR будет сброшен в «0», показывая, что прибор находится в состоянии отработки сессии. Впоследствии будет декрементироваться Счетчик Задержки Начала Сессии до достижения нулевого значения. После этого DS1921H/Z будет находиться в состоянии ожидания еще одну минуту, а затем начнется процесс регистрации данных, при котором сначала скопируется содержимое регистра Часов Реального Времени в Регистр Начала Сессии.

Рис.11 ПРОЦЕДУРА СТАРТА СЕССИИ И РЕГИСТРАЦИИ ДАННЫХ

Процесс Старта Сессии вызывается, когда в Регистр Периода Измерений (адрес 020Dh) посредством команды Копирование Блокнотной Памяти записывается новое значение. Через минуту после обнуления Счетчика Задержки Начала Сессии завершается процедура старта сессии и начнется регистрация данных.

Остановка Сессии

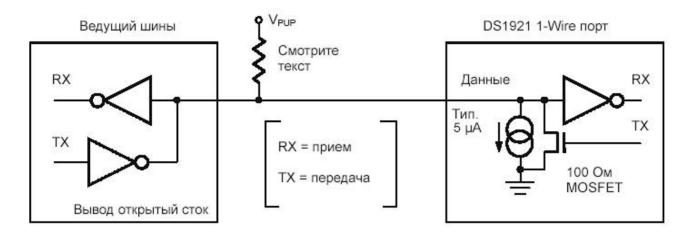
DS1921H/Z не имеет специальной команды для остановки сессии. Сессия может быть остановлена в любое время посредством записи по любому адресу в пределах от 0200h до 0213h или посредством записи в разряд МІР Регистра Статуса (адрес 0214h) значения «0». Оба этих подхода используют команду Копирование Блокнотной Памяти. Для остановки сессии необязательно, чтобы истекло время задержки сессии (см. Рис.11).

КОНФЛИКТЫ ДОСТУПА К ПАМЯТИ

Во время отработки сессии периодически выполняются температурные выборки и данные сохраняются в Памяти Последовательных Температурных Отсчетов, Памяти Гистограммы и Памяти Выходов За Пороги. Эта «внутренняя активность» имеет приоритет доступа к этим страницам над командами Чтение Памяти и Чтение Памяти С СRС-проверкой. Если происходит конфликт, могут быть считаны недостоверные данные, даже если СRС-значение совпадает. Для уверенности в правильности данных рекомендуется сначала считать разряд SIP Регистра Статуса. Если он установлен в «1», следует подождать с чтением Памяти Последовательных Температурных Отсчетов, Памяти Гистограммы и Памяти Выходов За Пороги до установки этого бита в «0». Подобный конфликт наиболее вероятен при большой частоте выборок (1 раз в минуту). Так как все выборки производятся при переключении показаний секунд с 59 в 00, конфликты памяти можно избежать, предварительно читая показания секунд из узла Часов Реального Времени. Например, если пользователю требуется для чтения данных из памяти 2 секунды, то не следует начинать чтение при показаниях счетчика секунд 58, 59, 00. Альтернативный способ — читать область памяти дважды, и принимать данные только при совпадении результатов. В любом случае, при разработке программного обеспечения важно знать о возможности подобной ситуации и принимать меры для ее обхода.

ОРГАНИЗАЦИЯ 1-WIRE-CETEЙ

1-Wire-сеть является системой, которая содержит на магистрали обмена данными одного ведущего и одного или несколько ведомых. Во всех случаях DS1921H/Z является ведомым прибором. Обычно ведущим 1-Wire-магистрали выступает микроконтроллер. Описание 1-Wire-магистрали разбито на три раздела: аппаратная конфигурация, последовательность действий и сигналы 1-Wire-магистрали (типы и временные параметры). Протокол определяет действия на 1-Wire-магистрали, как состояния шины данных в течение временных слотов, инициирующихся падающим фронтом синхроимпульсов, поступающих от ведущего. Более подробное описание протокола см. в Главе 4 документа «Books of iButton Standards».


АППАРАТНАЯ КОНФИГУРАЦИЯ

По определению 1-Wire-магистрали она содержит один провод для передачи данных и возвратный провод. При этом важно, что любым прибором на 1-Wire-магистрали можно управлять в определенное строго соответствующее время. Для реализации этого, каждый ведомый прибор, подключаемый к 1-Wire-магистрали, должен иметь вывод с открытым стоком или тремя состояниями. 1-Wire-порт устройства DS1921H/Z является выводом с открытым стоком, внутренняя эквивалентная схема которого показана на Рис. 12.

Многоточечная 1-Wire-сеть состоит из 1-Wire-магистрали с множеством подключенных к ней ведомых приборов, оснащённых 1-Wire-интерфейсом. Стандартная скорость передачи данных по 1-Wire-магистрали составляет максимум 16,3 Кбит/с. Эта скорость может быть увеличена до 142 Кбит/с активизацией специального ускоренного режима обмена. Полное соответствие устройства DS1921H/Z стандартам iButton не гарантируется производителем. Максимальная скорость передачи данных этого прибора в стандартном режиме – 15,4 Кбит/с, а в ускоренном – 125 Кбит/с. Значение резистора подтяжки напрямую зависит от длины 1-Wire-магистрали и ее нагруженности. Минимальное значение резистора подтяжки при любой скорости обмена для прибора DS1921H/Z – 2,2 кОм.

Исходным состоянием для 1-Wire-магистрали является высокий уровень. Когда по какой-либо причине обмен необходимо прекратить, 1-Wire-магистраль должна быть переведена в исходное состояние для возобновления информационного обмена. Если этого не произойдет, и шина данных останется в состоянии низкого уровня более чем на 16 мкс (в ускоренном режиме) или на 120 мкс (в стандартном режиме), то один или более ведомых приборов на 1-Wire-магистрали могут воспринять эту ситуацию как сброс. Заметим, что значение 16 мкс не вполне удовлетворяет работе прибора DS1921H/Z. При использовании прибора DS1921H/Z шина данных должна оставаться в состоянии низкого уровня не более, чем 15 мкс в ускоренном режиме, чтобы ведомым не был воспринят импульс сброса. Прибор DS1921H/Z гарантированно будет осуществлять корректную связь с драйверами DS2480B и DS2490 и адаптерами, которые базируются на этих микросхемах.

Рис12. АППАРАТНАЯ КОНФИГУРАЦИЯ

ПОСЛЕДОВАТЕЛЬНОСТЬ ДЕЙСТВИЙ

Протокол доступа к устройству DS1921H/Z через 1-Wire-порт производится в следующем порядке:

- Инициализация
- Команда Функции ПЗУ
- Команда Функции Памяти/Управления
- Действие/Данные

ИНИЦИАЛИЗАЦИЯ

Все циклы обмена на 1-Wire-магистрали начинаются с последовательности инициализации. Она состоит из импульса сброса, вырабатываемого ведущим и следующего за ним импульса присутствия, вырабатываемого ведомым. Импульс присутствия позволяет ведущему узнать, присутствует ли прибор DS1921H/Z на 1-Wire-магистрали и готов ли он к работе. Более подробно см. раздел «Сигналы 1-Wire-Магистрали».

КОМАНДЫ ФУНКЦИЙ ПЗУ

После обнаружения ведущим импульса присутствия он может выработать одну из семи команд Функции ПЗУ. Все Команды Функций ПЗУ являются 8-битовыми. Список этих команд приведен на Рис.13.

Чтение ПЗУ [33h]

Эта команда позволяет ведущему 1-Wire-магистрали читать 8-битовый код семейства DS1921H/Z, уникальный 48-разрядный регистрационный номер и 8-битовый СRС-код. Она может быть использована, только если на магистрали присутствует только один ведомый. Если на магистрали присутствуют несколько ведомых, то при использовании этой команды может произойти смешение данных. Тогда все ведомые будут пыться передавать в одно и то же время (все открытые стоки образуют «проводное И»). Результатом явится несовпадение кода семейства и 48-разрядного номера с их контрольной суммой.

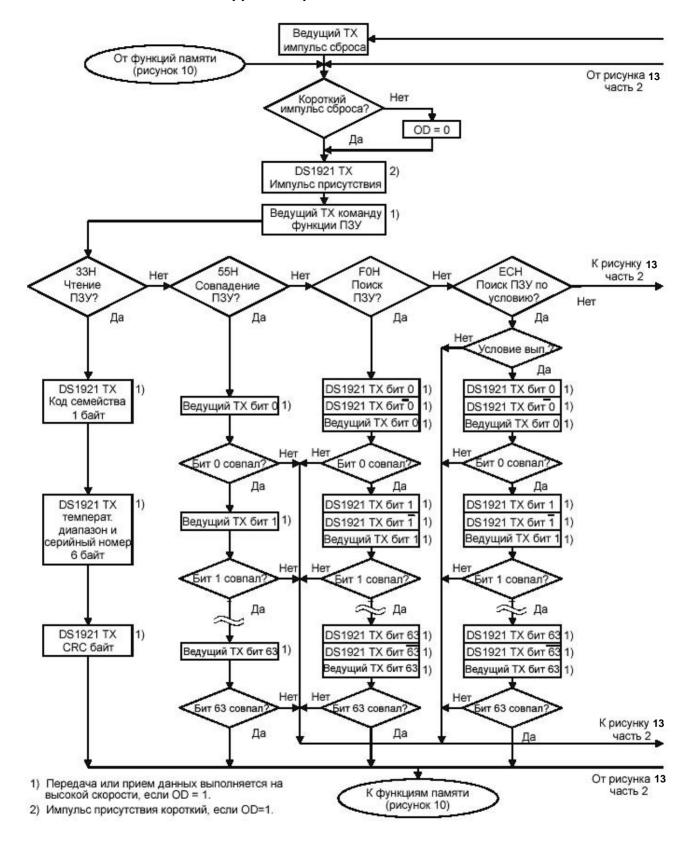
Совпадение ПЗУ [55h]

Эта команда, за которой следует 64-битная последовательность ПЗУ, которая позволяет ведущему адресовать отдельный прибор DS1921H/Z на распределенной многоточечной 1-Wire-магистрали с несколькими ведомыми. На следующую команду функции памяти ответит только тот прибор, у которого в точности совпала 64-битная последовательность ПЗУ. Все другие ведомые будут ожидать импульс сброса. Эта команда может использоваться при наличии одного или нескольких ведомых приборов на 1-Wire-магистрали.

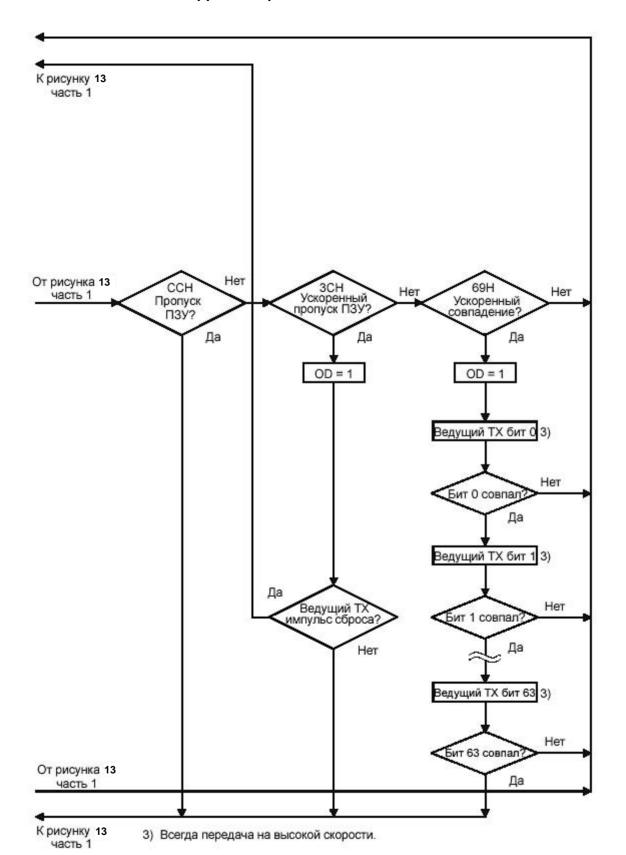
Поиск ПЗУ [F0h]

Когда система инициализируется первый раз, ведущий может не знать количество ведомых приборов, присутствующих на 1-Wire-магистрали и их регистрационные номера. Благодаря такому преимуществу 1-Wire-магистрали, как проводное «И», ведущий может использовать процедуру исключения для идентификации конкретных регистрационных номеров всех ведомых приборов сети. Для каждого бита регистрационного номера, начиная с младшего значащего бита, ведущий выдает три временных слота. В первом из них, каждый ведомый, участвующий в поиске, выдает истинное значение очередного бита своего регистрационного номера. Во втором слоте каждый ведомый (т.е. присутствующий на магистрали) выдает дополнение этого бита (его инверсию). В третьем слоте ведущий передает выбранное им значение бита. Все ведомые, у которых соответствующий бит не совпал со значением, переданным ведущим, исключаются из дальнейшего поиска. Если оба результирующих (по проводному «И») бита в первом и втором слотах имеют значения «0», ведущий делает вывод, что существуют ведомые, у которых этот бит равен «0» и ведомые, у которых этот бит равен «1». Выбирая значение бита, ведущий сортирует приборы. По завершении одного такого прохода алгоритма сортировки ведомых, ведущий узнает полный регистрационный номер одного ведомого прибора-абонента 1-Wire-сети. Дополнительные проходы идентифицируют полные регистрационные номера оставшихся приборов. См. документ «Application Note 187: 1-Wire Search Algorithm».

Условный Поиск ПЗУ [ECh]


Эта команда действует подобно команде Поиск ПЗУ, за исключением того, что в поиске участвуют только те устройства, для которых выполняется определенное условие. Использование 1-Wire-магистрали команды Условного Поиска ПЗУ является эффективным способом обнаружить на обслуживаемой 1-Wire-магистрали устройства, которые сигнализируют о важном событии. После каждого случая генерации ведущим команды Условный Поиск и определения с её помощью 64-разрядного идентификационного номера прибора, отвечающего условию, индивидуальный доступ к нему осуществляется командой Совпадение ПЗУ. При этом остальные ведомые приборы, присутствующие на 1-Wire-магистрали, не будут участвовать в процессе поиска, а будут ожидать импульса сброса.

DS1921H/Z будет отвечать на команду Условный Поиск только тогда, когда хотя бы один из трех флагов Регистра Сигналов Тревог (0214h) установлен в «1», при этом сигнал о превышении температурного порога будет выработан только, если он разрешен (см. раздел «РЕГИСТР УПРАВЛЕНИЯ»). В случае, когда выбрано более одного условия, событие, случившееся первым, «заставит» ведомый прибор ответить на запрос ведущего при выполнении им процедуры условного поиска.


Пропуск ПЗУ [CCh]

Эта команда экономит время в системе с одним ведомым прибором на магистрали, позволяя ведущему осуществлять доступ к памяти без применения 64-битного кода ПЗУ. Если на магистрали присутствует более одного ведомого, и за выполненной командой Пропуск ПЗУ следует команда Чтение, то произойдет смешение данных, так как несколько приборов будут передавать данные одновременно (при этом открытые стоки выходных каскадов этих приборов, притягивающие шину данных 1-Wire-магистрали к уровню потенциала возвратного провода, действуют как монтажное «И»)

Рис.13-1 БЛОК-СХЕМА КОМАНД ФУНКЦИЙ ПЗУ

Рис.13-2 БЛОК-СХЕМА КОМАНД ФУНКЦИЙ ПЗУ

☀Эмы Перевод описания на логгеры DS1921H/Z

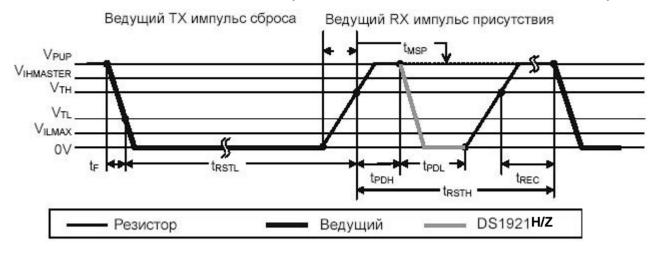
Ускоренный Пропуск ПЗУ [3Ch]

На магистрали, к которой подключено только одно ведомое устройство, данная команда сокращает время обмена. позволяя ведущему 1-Wire-магистрали обращаться к функциям памяти/управления устройства без использования 64-разрядного кода ПЗУ. В отличие от Пропуска ПЗУ, команда переводит прибор DS1921H/Z в ускоренный (Overdrive) режим обмена (разряд OD = 1). Все процедуры обмена, следующие за этой командой, осуществляются с повышенной скоростью до тех пор. пока импульс сброса длиной более 480 мкс не вернет все приборы на 1-Wire-магистрали в стандартный для 1-Wire-магистрали скоростной режим (разряд OD = 0).

Подача ведущим этой команды на магистрали с несколькими приборами, имеющими возможность работы в ускоренном режиме, переводит их в ускоренный режим. Для индивидуальной адресации таких приборов, следует после команд Совпадение ПЗУ или Поиск ПЗУ подать импульс сброса с длительностью, соответствующей ускоренному режиму. Это сократит процедуру поиска. Если на магистрали присутствуют несколько приборов с поддержкой ускоренного режима, и команда Ускоренный Пропуск ПЗУ следует сразу за командой Чтение, то произойдет смешение данных, так как одновременно будут передавать сразу несколько приборов (открытые стоки выходных каскадов этих приборов, притягивающие шину данных 1-Wire-магистрали к уровню потенциала возвратного провода, действуют, как монтажное «И»).

Ускоренное Совпадение ПЗУ [69h]

Эта команда, поданная после передачи 64-разрядного кода в ускоренном режиме, позволяет ведущему адресовать конкретный прибор DS1921H/Z на 1-Wire-магистрали и немедленно перевести его в ускоренный режим. На последующие команды функций памяти/управления будет отвечать лишь прибор с точно совпадающим кодом ПЗУ. Приборы, переведенные в ускоренный режим предыдущими командами Ускоренный Пропуск или Ускоренное Совпадение, останутся в этом режиме. Все приборы с поддержкой этого режима при подаче импульса сброса длиной более 480 мкс перейдут в стандартный режим обмена. Данная команда может использоваться как с одним, так и с несколькими приборами с 1-Wire-интерфейсом на одной 1-Wire-магистрали.


СИГНАЛЫ 1-WIRE-МАГИСТРАЛИ

Для обеспечения целостности данных при обслуживании прибора DS1921H/Z требуется строгое соблюдение протоколов. Протокол включает в себя четыре типа сигналов на 1-Wire-магистрали: последовательность сброса с импульсом сброса и импульсом присутствия, запись «0», запись «1» и чтение данных. За исключением импульса присутствия, все эти сигналы инициирует ведущий 1-Wire-магистрали. Прибор DS1921H/Z может производить обмен в двух различных режимах - стандартном и ускоренном. Если не было принудительной установки в ускоренный режим. DS1921H/Z будет осуществлять связь на стандартной скорости. При ускоренном режиме все временные параметры импульсов сокращаются.

Для перехода 1-Wire-магистрали из исходного состояния в активное, напряжение на ней должно упасть с уровня V_{PUP} до уровня V_{TI} . Для перехода из активного состояния в исходное, напряжение на шине данных должно нарасти с уровня V_{ILMAX} до уровня V_{TH}. Время такого нарастания напряжения обозначено символом «ε» на Рис. 14. и его длительность зависит от величины резистора подтяжки R_{PUP} и емкости 1-Wire-магистрали. Напряжение V_{ILMAX} является информацией для прибора о логическом уровне, но не о каких-либо событиях.

Последовательность инициализации, требуемая для начала любой связи с DS1921H/Z показана на Рис. 14. Импульс сброса и следующий за ним импульс присутствия показывают, что DS1921H/Z готов для приема данных после выдачи корректной команды функций ПЗУ или функции памяти. Если ведущий использует функцию управления длительностью падающего фронта, то он должен «притянуть» шину данных к низкому уровню на время t_{RSTI} + t_{F} для компенсации переходного процесса. Если длительность t_{RSTI} превысит 480 мкс. то прибор выйдет из ускоренного режима и перейдет в стандартный. Если DS1921H/Z находился в ускоренном режиме обмена и t_{RSTI} ≤ 80 мкс, то прибор останется в этом режиме.

Рис.14 ПРОЦЕДУРА ИНИЦИАЛИЗАЦИИ (ИМПУЛЬСЫ СБРОСА И ПРИСУТСТВИЯ).

После того, как ведущий освободит шину данных, он переходит в режим приема (RX). Теперь напряжение на шине данных подтягивается до уровня V_{PUP} через R_{PUP} или, в случае использования драйверов DS2480B или DS2490, с помощью схемы активной подтяжки. При пересечении напряжением уровня V_{TH} DS1921H/Z находится в режиме ожидания в течение t_{PDH} и затем передает импульс присутствия, подтягивая шину данных к низкому уровню на время t_{PDL} . Для обнаружения импульса присутствия ведущий должен проверить состояние шины данных через время t_{MSP} .

Время t_{RSTH} должно быть не меньше суммы времен: t_{PDHMAX} , t_{PDLMAX} , t_{RECMIN} . Сразу по истечении времени t_{RSTH} DS1921H/Z готов для обмена данными. При смешанном составе сети интервал t_{RSTH} должен быть увеличен до 480 мкс минимум при стандартной скорости обмена, и до 48 мкс при ускоренном режиме для адаптации других приборов на 1-Wire-магистрали.

Временные Слоты Чтения/Записи

Обмен данными с DS1921H/Z происходит через временные слоты, в каждом из которых передаётся один бит информации. Временные слоты записи передают данные от ведущего к ведомому. Временные слоты чтения передают данные от ведомого к ведущему. Определения временных интервалов для слотов записи и чтения показаны на Рис. 15.

Любой цикл обмена начинается подтяжкой ведущим 1-Wire-магистрали данных к низкому уровню. Как только напряжение на шине данных падает ниже уровня V_{TL} , DS1921H/Z запускает свой внутренний таймер, который определяет, когда следует читать шину данных в цикле записи, и как долго данные будут правильными в цикле чтения.

Передача От Ведущего К Ведомому

Для временного слота **Запись** "1" напряжение на шине данных должно, нарастая, пересечь уровень V_{TH} до истечения t_{W1LMAX} - времени удержания сигнала записи «1» (состояние низкого уровня). Для временного слота **Запись** "0" напряжение на шине данных должно удерживаться ниже уровня V_{TH} не меньше времени t_{W0LMIN} удержания сигнала записи «0» (состояние низкого уровня). Напряжение на шине данных не должно превышать уровень V_{ILMAX} в течение всего интервала t_{W0L} или t_{W1L} . После достижения напряжением уровня V_{TH} прибор DS1921H/Z требует времени восстановления t_{REC} , прежде чем он будет готов к отработке следующих временных спотов.

Передача От Ведомого К Ведущему

Временной слот **чтения данных** начинается также, как слот записи «1». Напряжение на шине данных должно оставаться ниже уровня V_{TL} не меньше времени t_{RL} удержания сигнала чтения (состояние низкого уровня). Если DS1921H/Z передает для чтения сигнал «0», он должен в течение времени t_{RL} подтянуть шину данных к низкому уровню (т. е. продублировать такую подтяжку шины данных ведущим 1-Wire-магистрали). Внутренний таймер ведомого определяет время окончания этой подтяжки, после чего напряжение начнет снова расти. Если DS1921H/Z передает для чтения сигнал «1», то он не дублирует подтяжку данных шины к низкому уровню, и напряжение начнет расти сразу по истечении времени t_{RL} .

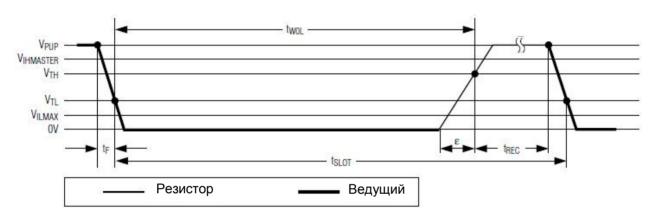
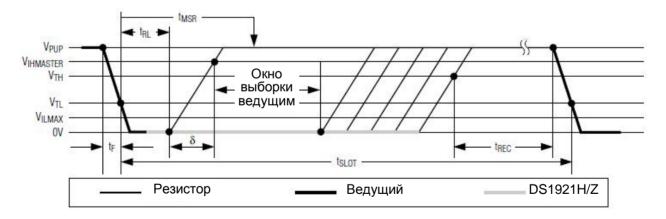

Сумма t_{RL} и δ (длительность фронта) с одной стороны и внутренний таймер DS1921H/Z с другой определяют окно выборки (от t_{MSRMIN} до t_{MSRMAX}), в котором ведущий 1-Wire-магистрали должен читать шину данных. Для более надёжной связи интервал t_{RL} должен быть как можно более коротким в пределах допустимого, и ведущий должен читать как можно быстрее, но не позднее времени t_{MSRMAX} . После чтения шины данных ведущий 1-Wire-магистрали должен ожидать, пока не истечёт время t_{SLOT} . Это гарантирует достаточное время восстановления t_{REC} , для подготовки DS1921H/Z к следующему временному слоту.

Рис.15 ВРЕМЕННЫЕ ДИАГРАММЫ ЗАПИСИ/ЧТЕНИЯ


ВРЕМЕННОЙ СЛОТ ЗАПИСЬ «1»

ВРЕМЕННОЙ СЛОТ ЗАПИСЬ «0»

ВРЕМЕННОЙ СЛОТ ЧТЕНИЯ

ГЕНЕРАЦИЯ CRC-КОДА

Прибор DS1921H/Z реализует два варианта алгоритма контроля с помощью избыточного циклического кода (CRC). Первый CRC является 8-битовым и хранится в старшем значащем байте 64-разрядного ПЗУ. Ведущий может вычислять значение этого CRC от первых 56 бит 64-разрядного ПЗУ и сравнивать это значение с хранимым внутри DS1921H/Z для определения безошибочности приема данных ПЗУ. Эквивалентный полином этого CRC имеет вид: $X^8 + X^5 + X^4 + 1$. Этот 8-битовый CRC формируется в прямом (неинвертированном) коде. Он вычисляется и прожигается лазером при изготовлении каждого DS1921H/Z.

Второй 16-битовый CRC генерируется в соответствии со стандартной полиномиальной функцией $X^{16}+X^{15}+X^2+1$. Этот CRC используется для обнаружения ошибок при чтении данных из памяти с помощью команды Чтение Памяти С CRC и для быстрой проверки передачи данных при записи/чтении в/из блокнотной памяти. В отличие от 8-битового CRC 16-битовый CRC всегда передается в инвертированном коде. CRC-генератор в DS1921H/Z (Рис. 16) будет вычислять новое значение CRC как показано на блок-схеме Рис. 10. Ведущий 1-Wire-магистрали сравнивает значение СRC, прочитанное от прибора, с вычисленным из данных и решает продолжать работу или прочитать данные заново в случае ошибки. При первом выполнении команды Чтение Памяти С CRC значение 16-битового CRC является результатом сдвига байта в предварительно сброшенном CRC-генераторе и следующих за ним двух байтов адреса и байтов данных. При последующих выполнениях этой команды значение 16-битового CRC будет являться результатом сдвига байтов данных в предварительно сброшенном CRC-генераторе.

При выполнении команды Запись В Блокнотную Память СРС генерируется с помощью предварительного сброса СВС-генератора и следующего за ним сдвига кода команды, начальных адресов ТА1 и ТА2 и всех байтов данных. DS1921H/Z будет передавать этот CRC, только если байты данных, записанных в блокнотную память включают конечное смещение 11111b. Данные могут начинаться с любой ячейки внутри блокнотной памяти.

При выполнении команды Чтение Блокнотной Памяти CRC генерируется с помощью предварительного сброса CRC-генератора и следующего за ним сдвига кода команды, начальных адресов ТА1 и ТА2, байта E/S и данных блокнотной памяти, начиная с начального адреса. DS1921H/Z будет передавать этот CRC, только если процедура чтения будет продолжаться до конца блокнотной памяти, не взирая на действительное значение конечного смещения.

Для получения подробной информации о генерации значений CRC см. документ «Application Note 27».

Рис.16 ОПИСАНИЕ АППАРАТНОЙ СТРУКТУРЫ И ПОЛИНОМА 16-БИТОВОГО CRC

Специфика Команд 1-Wire-Протокола – Условные Обозначения

Обозначение	Описание
RST	Импульс сброса, вырабатываемый мастером
PD	Импульс присутствия, вырабатываемый ведомым
Select	Команда и данные для выполнения протокола функции ПЗУ
WS	Команда Запись В Блокнотную Память
RS	Команда Чтение Блокнотной Памяти
CPS	Команда Копирование Блокнотной Памяти
AM	Команда Чтение Памяти
AMC	Команда Чтение Памяти С CRC
СМ	Команда Очистка Памяти
СТ	Команда Преобразование Температуры
TA	Начальные адреса ТА1, ТА2
TA – E/S	Начальный адреса TA1, TA2 с байтом E/S
< данные в EOS >	Передача байтов данных, необходимых для достижения смещения блокнотной. памяти 1Fh
< данные в ЕОР >	Передача байтов данных, необходимых для достижения конца страницы памяти
< данные в ЕОМ >	Передача байтов данных, необходимых для достижения конца памяти последовательных температурных отсчетов
< 00 в ЕОР >	Передача нулевых байтов данных, необходимых для достижения границы страницы памяти
< 32 байта >	Передача 32 байтов
< данные >	Передача неопределенного объема данных
CRC16\	Передача инвертированного CRC16
FF цикл	Неопределенный цикл, в котором мастер читает байты FFh
АА цикл	Неопределенный цикл, в котором мастер читает байты AAh
Занято	Интервал во время исполнения команды Копирование Блокнотной Памяти, когда DS1921H/Z не отвечает. Любые биты, прочитанные в это время – логические «1».
00 цикл	Неопределенный цикл, в котором мастер читает байты 00h

Специфика Команд 1-Wire-Протокола – Цветовая Маркировка

От ведущего к ведомому И Ведомому к ведущему

Запись в Блокнотную Память, достигая конца блокнотной памяти

RST PD Select WS TA <данные в EOS> CRC16\ FF цикл

Запись в Блокнотную Память, не достигая конца блокнотной памяти

RST PD Select WS TA <данные> RST PD

Чтение Блокнотной Памяти

RST PD Select RS ТА – E/S <данные в EOS> CRC16\ FF цикл

Копирование Блокнотной Памяти (успешное)

RST PD Select CPS TA – E/S Busy АА цикл

Копирование Блокнотной Памяти (неправильные TA – E/S)

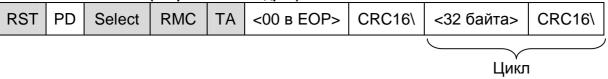
RST PD Select CPS TA-E/S FF цикл

Чтение Памяти (успешное)

RST PD Select RM TA <данные в EOM> 00 цикл

Чтение Памяти (неправильный адрес)

RST PD Select RM ТА 00 цикл


Чтение резервных страниц с 20 по 63, или с 68 по 127, или со 192 и старше (лежащих вне памяти последовательных температурных отсчетов) приведет к чтению нулевых байтов 00h.

Чтение Памяти С CRC (успешное)

32 байта — это либо данные правильно указанной страницы, либо нулевые байты, когда производится чтение резервных страниц с 20 по 63, или с 68 по 127, или со 192 и старше (лежащих вне памяти последовательных температурных отсчетов).

Чтение Памяти С CRC (неправильный адрес)

Все 32 байта нулевые.

Очистка Памяти

RST PD Select	СМ	FF цикл
---------------	----	---------

Для проверки успешности очистки памяти необходимо прочитать Регистр Статуса по адресу 0214h. Если разряд MEMCLR содержит 1, то команда успешно выполнилась.

Преобразование Температуры

DOT	DD	0-14	ОТ	FF
RST	PD	Select	СТ	FF цикл

Для чтения результата и проверки его правильности читаются адреса 0211h (результат) Счетчик Всех Отсчетов Выполненных Прибором по адресам с 021Dh по 021Fh. Если содержимое счетчика инкрементировалось, то команда выполнилась успешно.

ПРИМЕР СЕССИИ: ПОДГОТОВКА И ЗАПУСК НОВОГО ЦИКЛА УСТРОЙСТВА ТЕРМОХРОН.

Допущение: предыдущий рабочий цикл, отрабатываемый прибором, завершился. Принудительно завершить его можно, например, последовательностью действий Шага 1, нижеследующего алгоритма, или установкой разряда МІР Регистра Статуса в «0».

Подготовка DS1921H/Z к рабочему циклу включает в себя четыре шага:

- Шаг 1: установка часов реального времени (если требуется коррекция их хода);
- Шаг 2: очистка параметров предыдущего цикла;
- Шаг 3: установка условного поиска и задержки старта;
- Шаг 4: установка порогов и запись периода измерений для запуска цикла.

ШАГ 1

Пусть текущее время 15:30:00, понедельник, 1-вое апреля 2002 года. Эти данные записываются в регистры часов реального времени как:

Адрес	200h	201h	202h	203h	204h	205h	206h
Содержимое	00h	30h	15h	01h	81h	04h	02h

Все дальнейшие действия подразумевают, что на 1-Wire-магистрали присутствует лишь один прибор DS1921H/Z:

Режим мастера	Данные (начиная с младшего бита)	Комментарии
Передача	Сброс	Импульс сброса (480 мкс ÷ 960 мкс)
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	0Fh	Команда Запись Блокнотной Памяти
Передача	00h	TA1, начальное смещение = 00h
Передача	02h	TA2, адрес = <u>02</u> 00h
Передача	<7 байт данных>	Запись 7 байт данных в блокнотную память
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	AAh	Команда Чтение Блокнотной Памяти
Прием	00h	Чтение TA1, начальное смещение = 00h
Прием	02h	Чтение TA2, адрес = <u>02</u> 00h
Прием	06h	Чтение E/S, конечное смещение = 6h, флаги = 0h
Прием	<7 байт данных>	Чтение блокнотной памяти и проверка
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	55h	Команда Копирование Блокнотной Памяти
Передача	00h	TA1
Передача	02h	ТА2 (КОД АВТОРИЗАЦИИ)
Передача	06h	E/S
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия

ШАГ 2

Установите разряд EMCLR в «1», запустите часы и затем подайте команду Очистка Памяти. Генератор узла часов реального времени должен быть разблокирован, прежде чем запущено исполнение команды Очистка Памяти. Необходимо выдержать задержку в 500 мкс после исполнения команды Очистка Памяти и следующим 3 шагом алгоритма. В результате Регистр Статуса будут записаны следующие данные:

Адрес	20Eh
Содержимое	40h

Все дальнейшие действия подразумевают, что на 1-Wire-магистрали присутствует лишь один прибор DS1921H/Z:

Режим мастера	Данные (начиная с младшего бита)	Комментарии
Передача	Сброс	Импульс сброса (480 мкс ÷ 960 мкс)
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	0Fh	Команда Запись Блокнотной Памяти
Передача	0Eh	TA1, начальное смещение = 0Eh
Передача	02h	TA2, адрес = <u>02</u> 0Eh
Передача	40h	Запись байта статуса в блокнотную память
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	AAh	Команда Чтение Блокнотной Памяти
Прием	0Eh	Чтение TA1, начальное смещение = 0Eh
Прием	02h	Чтение TA2, адрес = <u>02</u> 0Eh
Прием	0Eh	Чтение E/S, конечное смещение = 0Eh, флаги = 0h
Прием	40h	Чтение блокнотной памяти и проверка
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	55h	Команда Копирование Блокнотной Памяти
Передача	0Eh	TA1
Передача	02h	ТА2 (КОД АВТОРИЗАЦИИ)
Передача	0Eh	E/S
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	3Ch	Команда Очистить Память
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия

ШАГ 3

В этом примере режим кольцевого буфера (rollover) отключен, и условный поиск проводится только по признаку превышения значения верхнего температурного предела. Задержка старта равна 90 минут (5Ah) и флаги TLF, THF и TAF сброшены. Это эквивалентно записи в специальные функциональные регистры следующих кодов:

Адрес	20Eh	20Fh	210h	211h	212h	213h	214h
Содержимое	02h	00h [*]	00h [*]	00h [*]	5Ah	00h	00h

^{*}Запись сразу во все регистры с адресами 20Fh по 211h выполняется быстрее, чем запись задержки отдельным циклом обмена. Попытка записи в регистры с адресами 20Fh÷211h не изменит их содержимого.

Все дальнейшие действия подразумевают, что на 1-Wire-магистрали присутствует лишь один прибор DS1921H/Z:

Режим мастера	Данные (начиная с младшего бита)	Комментарии
Передача	Сброс	Импульс сброса (480 мкс ÷ 960 мкс)
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	0Fh	Команда Запись Блокнотной Памяти
Передача	0Bh	TA1, начальное смещение = 0Bh
Передача	02h	TA2, адрес = <u>02</u> 0Eh
Передача	<7 байт данных>	Запись 7 байт данных в блокнотную память
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	AAh	Команда Чтение Блокнотной Памяти
Прием	0Eh	Чтение TA1, начальное смещение = 0Eh
Прием	02h	Чтение TA2, адрес = <u>02</u> 0Eh
Прием	13h	Чтение E/S, конечное смещение = 13h, флаги = 0h
Прием	<7 байт данных>	Чтение блокнотной памяти и проверка
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	55h	Команда Копирование Блокнотной Памяти
Передача	0Eh	TA1
Передача	02h	ТА2 (КОД АВТОРИЗАЦИИ)
Передача	13h	E/S
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия

ШАГ 4

В нашем примере значения температурных порогов нижнего 0°С и верхнего 10°С для прибора DS1921Z. Период измерений равен 10 минутам, то есть общая продолжительность всего цикла измерений составляет около 14 дней. Это эквивалентно следующим операциям записи:

Адрес	20Bh	20Ch	20Dh
Содержимое	46h	50h	0Ah

Все дальнейшие действия подразумевают, что на 1-Wire-магистрали присутствует лишь один прибор DS1921H/Z:

Режим мастера	Данные (начиная с младшего бита)	Комментарии
Передача	Сброс	Импульс сброса (480 мкс ÷ 960 мкс)
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	0Fh	Команда Запись Блокнотной Памяти
Передача	0Bh	TA1, начальное смещение = 0Bh
Передача	02h	TA2, адрес = <u>02</u> 0Eh
Передача	<3 байта данных>	Запись 3 байт данных в блокнотную память
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	AAh	Команда Чтение Блокнотной Памяти
Прием	0Bh	Чтение TA1, начальное смещение = 0Bh
Прием	02h	Чтение TA2, адрес = <u>02</u> 0Eh
Прием	0Dh	Чтение E/S, конечное смещение = 0Dh, флаги = 0h
Прием	<3 байта данных>	Чтение блокнотной памяти и проверка
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия
Передача	CCh	Команда Пропуск ПЗУ
Передача	55h	Команда Копирование Блокнотной Памяти
Передача	0Bh	TA1
Передача	02h	ТА2 КОД АВТОРИЗАЦИИ
Передача	0Dh	E/S
Передача	Сброс	Импульс сброса
Прием	Присутствие	Импульс присутствия

Если шаг 4 завершился успешно, то Регистры Начала Цикла будут содержать дату и время, считанные из узла часов реального времени. Разряд MIP Регистра Статуса будет равен «1», разряд MEMCLR равен «0» и начнет отсчитываться задержка старта.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Габаритные размеры	 Смотри рисунок корпуса
Bec	3,3 г

ПРЕДЕЛЬНЫЕ ВЕЛИЧИНЫ*

 Напряжение на выводе DATA относительно вывода GND
 от -0,5 В до +6,0 В

 Ток от вывода DATA
 20 мА

 Допустимый температурный диапазон
 от -40°C до +85°C**

 Допустимая температура хранения
 от -40°C до +50°C**

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

(при напряжении питания резистора подтяжки V_{PUP} = от 2,8 B до 5,25 B и температуре T_A = -40°C ... +85°C).

Параметр	Обозначение	Условия	Мин.	Тип.	Макс.	Единицы	Примеча- ния
Общие параметры выво	да DATA						
Сопротивление резистора «подтяжки» 1-Wire-магистрали	R _{PUP}				2,2	кОм	1, 2
Входная емкость	C _{IO}			100	800	пФ	3, 16
Входной ток	IL	Вывод DATA «подтянут» к V _{PUP}			10	мкА	4
Порог переключения из	V_{TL}	V _{PUP} > 4,5 B	1,14		2,70	В	5, 6, 7,
высокого в низкий уровень	V IL		0,71		2,70		16
Входное напряжение низкого уровня	V _{IL}				0,30	В	1, 5, 8
Порог переключения из	V _{TH}	V _{PUP} > 4,5 B	1,00		2,70	. В	5, 6, 9, 16
низкого в высокий уровень			0,66		2,70		
Выходное напряжение низкого уровня при токе нагрузки 4мА	V _{OL}				0,4	В	5, 10
		Стандартный режим, R _{PUP} = 2,2 КОм	5				
Время восстановления	t _{REC}	Сверхскоростной режим, RPUP = 2,2 КОм	2			МКС	1, 16
		Сверхскоростной режим, непосредственно перед импульсом сброса	5				
Длительность временного	t	Стандартный режим	65			Mico	1 15
слота	t _{SLOT}	Сверхскоростной режим	8			- мкс	1, 15

^{*}Внимание!!! Здесь указаны только предельные значения. Нормальная работа прибора при этих и иных значениях, находящихся за пределами диапазонов, перечисленных в этой спецификации, не регламентирована. Нахождение устройства при таких условиях на протяжении длительного времени может привести к снижению надежности его работы.

^{**}Хранение при температурах больше +50°C значительно сокращает срок службы элемента питания.

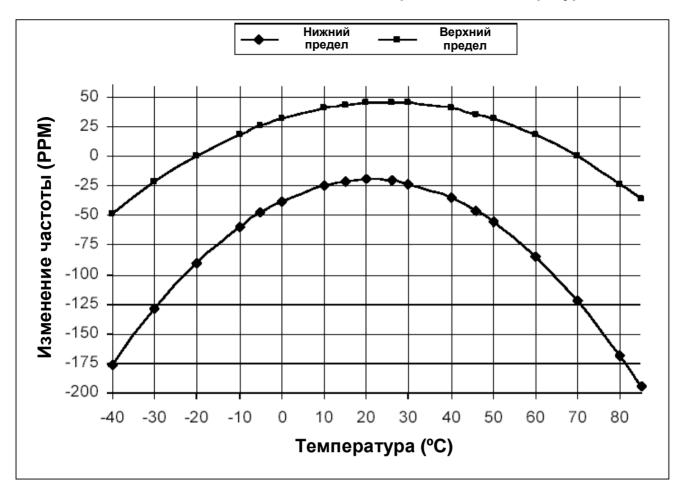
Параметр	Обозначение	Условия	Мин.	Тип.	Макс.	Единицы	Примеча- ния
Вывод DATA, цикл импульс	сов сброса и	обнаружения присутствия уст	ройства н	a 1-Wire	-магистра	али	
Длительность импульса		Стандартный режим, V _{PUP} > 4,5B	480		640		1, 15
сброса (низкий уровень)	t _{RSTL}	Стандартный режим	540		640	МКС	
		Сверхскоростной режим	48		80		
Импульс присутствия, длительность высокого	t _{РDН}	Стандартный режим	15		60	мкс	15
уровня		Сверхскоростной режим	1,1		6		
Импульс присутствия, длительность низкого	t _{PDL}	Стандартный режим	60		270	МКС	15
уровня		Сверхскоростной режим	7,5		24		
Время обнаружения присутствия устройства	t _{MSP}	Стандартный режим	60		75	МКС	1, 16
mphoy resizuar y esperienza		Сверхскоростной режим	6		8,6		
Вывод DATA, цикл записи г	ıo 1-Wire-маги	страли					
Длительность импульса записи «0» (низкий уровень)	t _{WOL}	Стандартный режим	60		120	МКС	1, 11, 15
camen c (mean ypezenz)		Сверхскоростной режим	6		15		
Длительность импульса	t _{W1L}	Стандартный режим	5		15	МКС	1, 11
записи»1»(низкий уровень)	-W1L	Сверхскоростной режим	1		2		.,
Вывод DATA, цикл чтения н	ıа 1-Wire-маги	страли					
Длительность импульса		Стандартный режим	5		15 - δ		
чтения (низкий уровень)	t _{RL}	Сверхскоростной режим	1		2 – δ	МКС	1, 11
Время распознавания	t _{MSR}	Стандартный режим	t _{RL} + δ		15		4.40
сигналов «0» и «1»ведущим устройством в цикле чтения		Сверхскоростной режим	$t_{RL} + \delta$		2	МКС	1, 12
Часы реального времени				<u> </u>			
Изменение частоты	Δ_{F}	От -5°С до +46°С	-48		+46	PPM	
Преобразователь температ	уры		•				
Диапазон рабочих	T _{TC}	DS1921H	+15		+46	•°C	
температур	.0	DS1921Z	-5		+26		
Время преобразования	t _{CONV}		75		360	МС	
Время реакции на изменение температуры	TRESP			130		С	13
Погрешность преобразования	Δϑ		-1		+1	°C	17
Количество преобразований температуры	N _{CONV}		C	м. графи	1КИ	-	14, 16

Замечания:

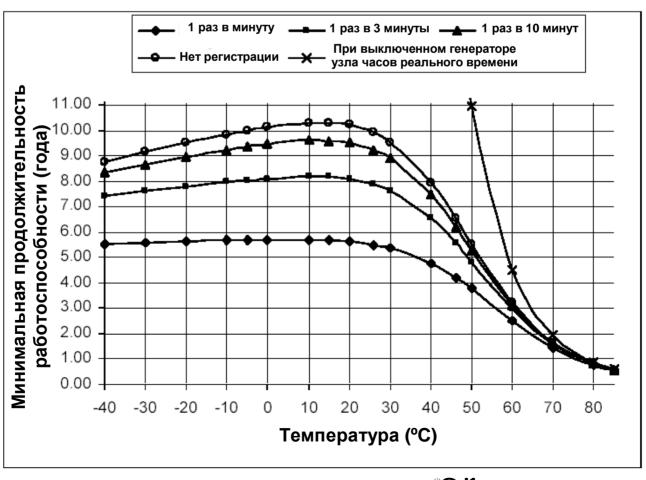
- 1) Системные рекомендации. Т.е. требование к мастеру 1-Wire-магистрали, обслуживающему прибор
- 2) Максимальное допустимое значение резистора подтяжки зависит от числа ведомых приборов в 1-Wire-системе и желаемого времени восстановления 1-Wire-магистрали. Указанное здесь значение применимо для систем с одним ведомым устройством и с минимальным временем восстановления. Для значительно нагруженных 1-Wire-сетей может потребоваться активная подтяжка, такая же, как реализованная в микросхемедрайвере DS2480B.
- 3) Емкость между выводами DATA и GND прибора может быть равной 800 пФ, когда питание подается первый раз. Если для подтяжки шины данных 1-Wire-магистрали используется резистор 2,2 КОм, то паразитная емкость не будет мешать передаче данных через 2,5 мкс после подачи питания.
- 4) Вход подключен к «земле» (выводу GND (шина RETURN)).
- 5) Все уровни напряжений относительно «земли» (вывода GND).
- 6) V_{TL} и V_{TH} являются функцией напряжения внутреннего источника питания, которое является функцией V_{PUP} и времени восстановления однопроводной шины. Максимальные указанные значения V_{TH} и V_{TL} соответствуют максимальному значению V_{PUP} (5,25 B). В любом случае, $V_{TL} < V_{TH} < V_{PUP}$.
- 7) Напряжение, ниже уровня которого сигнал воспринимается как логический «0» в течение падающего фронта на шине DATA.
- 8) Напряжение на шине DATA должно быть меньше или равно V_{ILMAX} всякий раз, когда ведущий подтягивает шину к низкому уровню.
- 9) Напряжение, выше уровня которого сигнал воспринимается как логическая «1» в течение нарастающего фронта на шине DATA.
- 10) Вольтамперная характеристика линейна до тех пор, пока напряжение меньше 1 В.
- 11) Величина ε на Рис. 15 время, требуемое механизму «подтяжки» для «подтягивания» шины DATA от уровня V_{IL} до уровня V_{TH}. Таким образом, фактическая максимальная длительность удержания мастером низкого уровня на шине данных составляет t_{W1LMAX} + t_F ε и t_{W0LMAX} + t_F ε, соответственно.
- 12) Величина δ на Рис. 15 время, требуемое механизму «подтяжки» для «подтягивания» шины DATA от уровня V_{IL} до уровня, воспринимаемого ведущим, как высокий. Максимальное время, за которое мастер должен подтянуть шину данных к низкому уровню, составляет t_{RLMAX} + t_F.
- 13) Эта величина была получена из опыта, проведенного исследовательским центром *Cemagref* в *Antony, France* в июле 2000 г. http://www.cemagref.fr/English/index.htm Test Report № E42.
- 14) Общее число измерений, которое может произвести прибор со встроенным источником питания, зависит от его рабочей температуры и температуры хранения. Когда прибор не используется, следует выключить часы реального времени и хранить его при температуре, не выше +25°C. При этих условиях прибор сохранит работоспособность в течение минимум 10 лет.
- 15) Выделенные (указанные) величины отличаются от опубликованных стандартов iButton. Для сравнения смотрите нижеследующую таблицу.
- 16) Приведенные значения получены с помощью процедур моделирования и не проверялись непосредственно на самой продукции.
- 17) Итоговая точность равна $\Delta\vartheta$ + 1/16°C за счет того, что разрешение прибора составляет 1/8°C.
- 18) ВНИМАНИЕ: Внимание! Все регистраторы, изготовленные компанией Maxim Integrated, проходят 100%-ный контроль и калибровку при изготовлении, что гарантирует их соответствие заявленным характеристикам, включая погрешность измерения температуры. Однако пользователь непосредственно несет ответственность за использование этого прибора по назначению, правильность его хранения и калибровки. Как и в случае с любым устройством, включающим в себя измерительный сенсор, пользователь должен периодически проверять погрешность измерения логгером температуры, чтобы удостовериться в его правильной работе. Более того, как и со всеми приборами такого типа, при установке на объекте и при воздействии жёстких внешних условий или других экстремальных условий может существовать очень малая, но ненулевая вероятность отказа прибора. В применениях, когда отказ логгера может привести к критической ситуации, пользователь должен предусмотреть применение других основных и (или) дублирующих методов контроля качества и соответствия продуктов и изделий, и определить методики обращения с ними для дальнейшего снижения рисков.

ВНИМАНИЕ! Здесь представлена трактовка Замечания 18 исполненная специалистами НТЛ "ЭлИн"

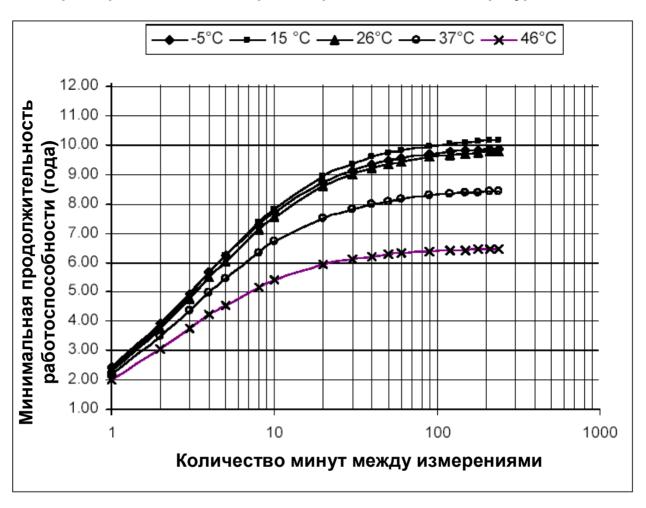
- 1. Поскольку это замечание относится к пункту, связанному с точностью измерений, выполняемых регистратором, оно регламентирует необходимость и обязанность периодической поверки и подтверждения его метрологических характеристик. С другой стороны в этих же описаниях в разделе «ПРИМЕНЕНИЕ» указывается прямое назначение обсуждаемых регистраторов, которые позиционируются, как средство для мониторинга температуры продуктов и медикаментов.
- Неверная методика применения регистраторов может привести к неверным результатам и выводам о зафиксированных ими значениях температуры и, следовательно, о качестве контролируемого продукта. Производители регистратора не несут ответственности за правильность избранной пользователем методики их применения.
- 3. Осуществление только температурного контроля продукта не может являться гарантией его безопасности.


Сравнительная Таблица Временных Характеристик

	Стандартные значения				Значения для DS1921H/Z			
Параметр	Стандартный режим		Ускоренный режим		Стандартный режим		Ускоренный режим	
	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.	Мин.	Макс.
t _{SLOT} (включая t _{REC})	61 мкс	(не определено)	7 мкс	(не определено)	65 мкс ¹⁾	(не определено)	8 мкс ¹⁾	(не определено)
t _{RSTL}	480 мкс	(не определено)	48 мкс	80 мкс	540 мкс	640 мкс	48 мкс	80 мкс
t _{PDH}	15 мкс	60 мкс	2 мкс	6 мкс	15 мкс	60 мкс	1,1 мкс	6 мкс
t _{PDL}	60 мкс	240 мкс	8 мкс	24 мкс	60 мкс	270 мкс	7,5 мкс	24 мкс
t _{WOL}	60 мкс	120 мкс	6 мкс	16 мкс	60 мкс	120 мкс	6 мкс	15 мкс


¹⁾ Интервал времени восстановления между временными слотами преднамеренно изменен на более продолжительный.

Значения, выделенные жёлтым фоном, отличаются от значений, опубликованных в стандартах iButton.


Зависимость Изменения Частоты Узла Реального Времени От Температуры

Минимальная Продолжительность Работоспособности Прибора В Зависимости От Температуры При Различных Значениях Параметра Частоты Регистрации

Минимальная Продолжительность Работоспособности Прибора В Зависимости От Значения Параметра Частоты Регистрации При Различных Температурах

Информация О Корпусе

Последнюю информацию о корпусе см. в Интернете на странице с адресом www.maxim-ic.com/packages. Следует отметить, что символы «+», «#» или «-» в маркировке на корпусе обозначают только RoHS-статус. Изображения на корпусе могут содержать различные символы суффикса, но рисунок соответствует корпусу вне зависимости от RoHS-статуса.

ТИП КОРПУСА	код	ДОКУМЕНТ №			
F5 can	IB#5CP	21-0266 (http://pdfserv.maxim-ic.com/package_dwgs/21-0266.PDF)			

Внимание! Данный документ учитывает все изменения и дополнения к описанию устройств DS1921H/Z ТЕРМОХРОН iButton™, выполненные разработчиком до февраля 2014 года.

> (909)694-95-87, (916)389-18-61, (985)043-82-51 **ЖЭЛИн** Научно-техническая Лаборатория "Электронные Инструменты" (**НТЛ** "ЭлИн"), февраль 2014 года